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Abstract

We propose a band structure for a triangular lattice with nearest neighbor hopping, in terms of
parameters which depend on applied pressure to the sample. Such a lattice is a representation of the
compound, Na,CoO, . y H,O, (Sodium Cobalt Oxyhydrate), which is superconducting at a critical
temperature of 7.~ 5 K. We calculate the density of states, N(®w) vs o, for several values of the parameters
which depend on pressure, distorting in this way the geometry of the lattice. We observe the frequency
dependence of the density of states for the different parameters. For zero pressure, we have obtained a
density of states which is not symmetric around o = 0. which is a different result with respect to a square
lattice in 2—-D. We also study the superconducting critical temperature, 7, as function of the chemical
potential, u. 7. and p are calculated from two self—consistent BCS equations. As a natural result, we have
studied the effect of pressure on 7, relating the different van Hove singularities, which appear in the density

of states, with the different 7,; .. ’s. We then prove that , = where |, is the number of logarithmic

singularities and _ is the numberof 7; .

mv?
’s. We compare our results with relevant results in the literature.
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Resumen

Proponemos una estructura de bandas para una red triangular con saltos a los primeros vecinos, en
término de parametros que dependen de la presion aplicada a la muestra. Tal red es representativa del

compuesto, Na CoO, - yH,0, el cual superconduce a una temperatura critica de 7. = 5 K. Calculamos la
densidad de estados, N(®) vs ®, para varios valores de los pardmetros vs. presion, distorcionando de esta
forma la geometria de la red. Observamos que la densidad de estados vs. frecuencia depende de los
parametros seleccionados. Para presion nula, hemos obtenido una densidad de estados que nos simétrica
alrededor de ® = 0, un resultado diferente para la red cuadrada en 2 — D. También hemos estudiado 7. vs el
potencial quimico, los cuales son calculados auto—consistentemente. Como un resultado esperado, hemos
estudiado el efecto de la presion sobre 7, relacionando las diferentes singularidades de van Hove, las cuales
aparecen en la densidad de estados, con los maximos de 7',.. Entonces probamos que el nimero de maximos
en T, son iguales al nimero de singularidades de van Hove que aparecen en V (®). Hemos comparado
nuestros resultados con los resultados relevantes en la literatura cientifica.

Palabras clave: superconductividad, densidad de estado, estructura de banda
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1 Introduction

Just recently the compound Sodium Cobalt
Oxyhydrate (Na, CoO, . yH,0) was discovered,
which presents superconducting properties at
T, =5 K (Takada et al., 2003). Na,CoO, . yH,0O
must be hydrated to superconduct (Takada et al.,
2003), and its triangular CoO, layers provide an

intriguing contrast with the square CuO, layers of

the high—temperature superconductors.
Such compound, in its solid state, corresponds to a
triangular lattice with equal lattice sides (Pereg-
Barnea & Hsiu-Hau, 2005) as it is shown in Fig. 1.
Superconductivity is induced on the CoO, layer,

which a triangular lattice by the presence of Co.
This superconductivity is considered non-—
conventional (Ishida et al., 2003; Fujimoto et al.,
2004) from a point of view of its symmetry, in that
the Cooper pairs are not in a spin singlet state with
s—wave symmetry, as with conventional
superconductors (Mazini & Hohannes, 2005).

Additionally to this exotic (non—conventional)
superconductivity, magnetism has been
discovered in this compound. This magnetic
phase is located near the superconducting phase
(Isharaetal.,2005; Sahurai et al., 2005). This may
led to the interpretation that the superconducting
phase has a magnetic origen. According to
(Laverock et al., 2007) the explanation for
superconductivity in sodium cobalt oxides when
hydrated with water is due to the properties of
some small elliptically shaped pockets predicted
to be electronically dominant Fermi surface sheet,
which they have detected experimentally by using
x—ray Compton scattering.

For example, the discover of supercon-
ductivity, with 7, < 5 K in the compound
Na, ;5Co0, .1:3H,0 has renewed the interest in
the physical properties of the undoped compound
Na, CoO, (Bernhard et al., 2007). Its rich phase

diagram includes several phases with
extraordinary properties of electromagnetic and
thermoelectric types. Among its key features we
can mention:
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Fig. 1. Scheme for the triangular lattice in 2-D’s. In the
proposed band structure we have taken into account the
nearest neighbor hopping matrix element. The parameters o
and f3 allow us to distort the lattice. y=0.001, N, =N,=1000.

1. Its triangular coordination of Co which favours
non—conventional base states.

2. Anomalous electromagnetic properties which
are not confined to the regime of Mott insulator
for x — 0, but for x — 1, where we expect a
band insulator.

Due to the fact that we have strong
differences in the experimental results (Mazin &
Hohannes, 2005), especially on the symmetry of
the SC order parameter, we have started the study
of these materials by the evaluation of the density
of states, under the application of static pressure.
These contradictory reports have led to an
unprecedented number of proposals (Kobayashi
et al., 2003; Higemoto et al., 2004; Kuroki et al.,
2004; Motrunik & Lee, 2004; Sa et al., 2004;
Watanabe et al., 2004; Yokoi et al., 2004;
Johannes et al., 2005; Kato et al., 2005; Yanase et
al., 2005) for the pairing symmetry, each in
agreement with some particular subset of
available data.

According to Mazin and Johannes (2005), the
remaining symmetries left are of /~type.
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However, as they themselves say, the
synthesis of single—crystal Na CoO, . yH,O 1is
difficult, and polycrystalline samples often show

inhomeneities in the distribution of Na and in the
H,0 accumulation (Chen et al., 2004; Ueland et

al.,2004). After being synthesized, the compound
is chemically unstable at ambient pressure and
humidity (Foo et al., 2005), which makes its
handling and characterization very problematic.
In order to arrive to their conclusions, they use
three conditions:

1. Two dimensionality. Electronic band structure
calculations for this compound show an
anisotropy in the Fermi velocity, which is
supported by experimental measured resistency

anisotropy of 10° - 10° (Jin et al., 2005). This
implies that the transport along the c—axis is
probably incoherent.

2. Absence of a finite superconducting gap. In all
the experimental works on the density of states at
the Fermi level (Fujimoto et al., 2004; Yokoi et
al., 2004; Yan et al., 2005) the authors conclude
that there is not an exponential behavior of the
superconducting gap for 77 — 0. However,
(Kobayashi et al., 2003; Yokoi et al., 2004;
Kobayashi et al., 2005; Kobayashi et al., 2006)
have carried out various kinds of experimental
studies and revealed by measuring, specifically,

the Co—N M R Knight shifts that the spin—inglet
pairing is realized in this compound. They have
also found that the rate of the Tc suppression by
non—magnetic impurities is small (Yokoi et al.,
2004). These results are explained by considering
the s—wave order parameter symmetry.

3. Absence of superconductivity—induced
spontaneous magnetic moments below the
superconducting critical temperature (Uemura et
al.,2004), Tc.

Then, again, because of all these problems, we
have decided to concentrate on s—wave
superconductivity only to obtain some

e(k) /20 = — cos (k) + 2 cos(—=) X cos(

consequences of the triangular lattice under
pressure. The consideration of other symmetries
is not a problem from the computational point of
view. Consideration of other symmetries changes
the numerical values of 7¢, which is a global
quantity.

From the analysis of the density of states
(Kittel, 1976), we can observe the behavior of this
quantity, with pressure, in the non-—
superconducting phase. This free density of states
depends on the lattice tight binding band (see Eq.

1).
\/§ky

7 k..
e(k)/2t = —cos (k)| + Oz‘(:os(?“L + = )

. (D
_ k 3k,
+F cos( % — \/;J)

In Eq. (1) ¢ has dimensions of energy and it
represents the hopping integral of wave functions
in the lattice neighbor sites in 2—D. In Eq. (1) o
and 3 are parameters which satisfy the following
conditionsa < 1l and B<1. Whena = =1 our
sample is free of pressure, namely, we have the
perfect lattice, and Eq. (1) becomes
k. \/Ek:y

2

) (2)

.
2

The structure of this paper is as follows. In
Section 2 we present the self—consistent
equations, valid in mean—field approximation, or
BCS approximations. These equations will be
solved in Section 3, where we present the
numerical solutions. Finally, we conclude in
Section 4.

2. The Self-Consistent Problem: Description
of the Method

The numerical algorithm of the density of

states, N(w), for a triangular lattice, was
calculated using the usual definition:
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:llr E ‘(w—e(l_::)) ' 3)

where N = N, x N, is the number of points in the
2-Dreciprocal space. In Eq. (3) we have assumed
that the dominant symmetry of the
superconductmg order parameter is of s—wave,

namely, k-independent. This condition is not
fully satisfied in the compound Na,CoO, . yH,0,

since this material is a non—conventional
superconductor. However, for another types of
symmetries the main features found in this paper
remain. o(x) is the Dirac delta function which has
dimensions of inverse energy.

For solving our self—consistent equations we
will approximate the Dirac delta function by the
following expression:

1
5(z) ~ lim ——1—
(z)~ lim = (4)

In what follows we will use y = 0.01- 0.001.
See the following figures. The calculation of 7¢ vs
wand n vs u (or 7 vs n) is based in the following
two self—consistent coupled equations:

1 1 tanh (55 ()~ )
Lo Ly )
VTN

()

where k, is the Boltzmann constant. 7. has
dimensions of /,T¢/t (See Section 3). V , in Eq.
(5), is the absolute value of the pairing interaction
which gives rise to the Cooper pairing. As we have
said earlier we have solved our two coupled
equations (5) numerically. To solve Eqs (5) we
have used V/t = 1.0. In Eq. (5) (p(k) is a factor
which takes care of the symmetry of the order
parameter. For s—wave symmetry, (p(?) =1 Vl?,
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while for d—wave symmetry we should take ¢ %)
=cos(k,) —cos(k,), etc.

It is important to point out that the number of
points is crucial in the determination of 7¢, since
the curve becomes smooth when the number of
the lattice points is increased. In our case, we have
obtained smooth results for N, = N, = 1000 or N =
1,000,000. The smoothness of the 7. curve is
important for the calculation of the isotope
exponent, o’, which depends on partial
derivatives of 7. with respect to pu and o,
(Rodriguez & Schmidt, 2003; Rodriguez &
Schmidt, 2006; Rodriguez & Schmidt, 2008).

3. Results and Discussion

T T T [P V[ T T [ T T [ T T [ TP [T T[T T [ T[T V[T

08— —

Fig. 2. Density of States for a perfect triangular
lattice with N =N, x N, = 1000 x 1000 points. y =
0.001.

The density of states for an undistorted
triangular lattice is shown in Fig. 2. This density
of states is not symmetric with respect to any
frequency, w, as it is the case for a perfect square
lattice. The frequency interval is w/t € (— 6, 2).
The van Hove singularity of the density of states is
located at w/t = 2. We will see later than the
positions of the logarithmic singularities of N ()
are related to the maxima of the superconducting
critical temperatures, namely, to 7,,.. This is a
consequence of the greater amount of reciprocal
space states available which contribute to
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superconductivity, around the chemical potential.
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Fig. 3. N (w) vs w/t for different values of
o = p, especifically, for 0.8, 0.5, 0.3 and 0.1,
respectively. Horizontal scale is w/t. Here N=N =
1000and y=0.01.

By deforming the perfect triangular lattice we
obtain different van Hove singularities for
different values of a and f (Eq. 1). These results
are shown in Figs. 2—6. Inthe caseofa=p =0,
we reproduce a 1-D lattice, since we totally
compress the lattice along the y—axis (there is not
dependence on k, , in the reciprocal space). For
this case (o = B = 0) the density of states is
symmetric around w/t = 0, with twomaxima at ®/t
=+2.0 (Fig. 6).

Let us compare Fig. 6 and the last Fig. 3 of,
this with o = =0.1. We see that these figures will
coincide if « = f = 0 (as a tendency), which is the
one—dimensional case. However, for o = f = 0.1
we observe a logarithmic singularity around w/f =
2.0 and another one starting to appear at w/t =
—2.0. This shows us that our density of states are
consistent between them.

The modification of N (w), by applying
pressure to the lattice, is obvious, since the density
of states depends on the band structure.

N(®) vs ® N(®) vs ®
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Fig. 4. N (w) vs w/t for different values of a = £,
namely, for o = 0.5 and f = 1.0, 0.8, 0.3, 0.0.
Horizontal scale is w/t. We see that when we
reduce £, with a smaller a, more logarithmic
singularities appear in the density of states. We
have taken N,=N,=1000andy=0.01.

N(w) vs N(®) vs ®
a=0,0, B=1,0 a=0,0, p=0,8
BT T T T T T T T T ] Lt L O B B
u - ]
03— —
02 ; — B ]
01— —
01— —
T T T T B ARV
S a4 3 o2 a4 0 1 2 3 4 S 4 3 2 a0 1 2 3 4

0=0.0 , B=0.5 0=0.0 , f=0.3
4

Fig. 5. N (w) vs w/t for different values of o = f3,
namely, for o = 0.5 and f = 1.0, 0.8, 0.3, 0.0.
Horizontal scale is w/t.  We have taken N, =N =
1000 and y=0.01.

As we have previously said we find that n,=
m,. This has to be like this because BCS theory is
valid close to the chemical potential and if the
density of states around the chemical potential has
a van Hove singularity, then we have a great
number of states available to produce
superconductivity or the Cooper pairs. So, the
singularities and the peaks of 7, are related and, in
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consequence, n,=m,

The study of the effect of the band structure on
the superconducting properties, namely, for 7 =
T, is left for the future. With Egs. (3) we can
calculate the isotope exponent, namely, a’, which
is defined by the following relation:

I, ocM-o, (6)

where M is the isotope mass of the substituted
ion. Such isotope exponent or isotope effect is
determined experimentally if we substitute one of
the elements of the triangular lattice (Co) by an
isotope ion, with different isotopic mass, M .

a=p=0,0
P77 L L L L L DL L B

0,75 —

N(w)

0,5(— —

0,25— —

Fig. 6. N(w)vs w/t fora=p =0.0. This density
of states corresponds to a 1-D lattice, which is
obtained if we apply static pressure. We have
taken N,.=N,=1000and y=0.01.

4. Conclutions

We have calculated the density of states for a
triangular lattice which has undergo applied
pressure. When we change the parameters of the
band structure, namely, o and f, we obtain
variations on the location and the number of van
Hove singularities.

For the case of a perfect triangular lattice we
obtain only one logarithmic singularity for the
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density of states, namely, at w/t = 2.0. On the
otherhand, we got T, =0.05, for u/t=2.0,0rp=
0.75.

The relations 7, vs p and N (w) vs u in the
perfect triangular lattice do not present symmetry
around particular values. In particular, we have
proved that n,=m,,, where nis the number of van
Hove singularities and mv is the number of
maximaof7,.

We leave for future work the evaluation of the
superconducting properties, namely, A(7)/t vs T/t,
where A(7T) is a absolute temperature de-
pendence of the order parameter, for 7= T, for
different values of pressure parameters o and f.

We would like to ending by pointing out a
delicate aspect of our numerical calculations. The
number of points both in real and reciprocal space,
N =N, > N,, isavery crucial parameter in results
presented here. For example, N, =N, =500 is a
reasonable value for the calculation of the density
of states and the super-conducting critical
temperature, 7. However, if we wish to perform
the calculation of the isotope exponent, o (Eq.
(6)), then we have to go over to the continuous
description by means of the following
transformation:

1 . 1 T 4
¥ 20 = 5 [ ek o
k
The reason to do that is due to the fact that the
1sotope exponent depends on the lattice points, or
N, and, it is a quantity which presents rapid
changes as function of p or x. In consequence,
with the use of continuous approximation, we can
use some of the numerical routines which have
been developed for these cases. To predict that
the behavior of a” vs p should be complex, as it
was found in (Rodriguez & Schmidt, 2003;
Rodriguez & Schmidt, 2006; Rodriguez &
Schmidt, 2008).
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