ARTÍCULO

Grosor relativo de pared de miocardio en fetos de mujeres con diabetes gestacional

Salus.2025; 29(1):26-31.

Relative myocardial wall thickness in fetuses of pregnant women with gestational diabetes

Mariángel J. Ramírez. R¹ Carlos García Curda^{1,2} Aleida M Rivas ³

RESUMEN

Introducción: La diabetes gestacional (DG) es una patología de creciente prevalencia, asociada a resultados maternos, perinatales v neonatales adversos. Afecta al corazón del feto, estructural v funcionalmente, siendo la ecocardiografía fetal una herramienta crucial en el manejo de gestantes diabéticas, permitiendo precozmente la evaluación del corazón y la detección de remodelado cardíaco. Obietivo: Determinar el remodelado cardíaco en fetos de gestantes con DG a través del grosor relativo de pared de miocardio (GRP) Métodos: Se realizó estudio prospectivo, descriptivo y de corte transversal, con muestra conformada por 92 gestantes, 40 con diagnóstico de DG y 52 gestantes sin DG, con edad gestacional comprendida entre 28 y 39 semanas. Se realizó ecocardiografía fetal para determinar el GRP y se usaron pruebas de medida de tendencia central para cálculo de media y desviación estándar, T Student y varianza. Resultados: Se evidenció remodelado cardiaco concéntrico en fetos de gestantes con DG, a través del aumento del GRP, obteniéndose media del GRP ventricular fetal de 1,17 ± 0,34, mayor a la media del grupo de gestantes sin DG, cuyo valor fue 0,79 ± 0,20. La diferencia fue estadísticamente significativa (p<0,005), el nivel de confianza 95% y un margen de error del 5%. Conclusiones: Los fetos de gestantes con DG presentaron un GRP miocárdico fetal, significativamente mayor al de las gestantes sin DG. El GRP, a través de la ecocardiografía puede ser un indicador importante de la salud cardíaca fetal en gestantes con DG, permitiendo diagnosticar cambios estructurales en el corazón fetal de manera precoz..

Palabras clave: Grosor relativo de pared de miocardio, ecocardiografía fetal, diabetes gestacional.

- ¹ Unidad de Perinatología. Facultad de Ciencias de la Salud. Universidad de Carabobo. Hospital Materno Infantil "Dr. José María Vargas". Valencia, Carabobo, Venezuela
- ² Departamento Clínico integral del Sur. Catedra de Obstetricia y Ginecología. Escuela de Medicina. Facultad de Ciencias de la salud. Universidad de Carabobo. Valencia. Carabobo. Venezuela
- ³ Unidad de Diabetes y Embarazo. Ciudad Hospitalaria "Dr. Enrique Tejera". Valencia, Carabobo, Venezuela

Autor de Correspondencia: Carlos Garcia Curda D

E-mail: carloscurda@hotmail.com

Recibido: 29/06/2025 **Aprobado**: 22/07/2025

ABSTRACT

Introduction: Gestational diabetes (GD) is a pathology of increasing prevalence, associated with adverse maternal, perinatal and neonatal outcomes. It affects the foetal heart, structurally and functionally, and foetal echocardiography is a crucial tool in the management of diabetic pregnant women, allowing early evaluation of the heart and detection of cardiac remodelling. Objective: To determine cardiac remodelling in foetuses of pregnant women with GD through relative myocardial wall thickness (RWT) Methods: A prospective, descriptive, cross-sectional study was carried out, with a sample of 92 pregnant women, 40 with a diagnosis of GD and 52 pregnant women without GD, with gestational age between 28 and 39 weeks. Fetal echocardiography was performed to determine the RPG, and tests of central tendency were used to calculate mean and standard deviation, T Student and variance. Results: Concentric cardiac remodelling was evidenced in fetuses of pregnant women with GD, through the increase in RPG, obtaining mean fetal ventricular RPG of 1.17 ± 0.34, higher than the mean of the group of pregnant women without GD, whose value was 0.79 ± 0.20. The difference was statistically significant (p<0.005), 95% confidence level and a margin of error of 5%. Conclusions: The foetuses of pregnant women with GD had a significantly higher foetal myocardial RPG than those of pregnant women without GD. The RPG, through echocardiography, can be an important indicator of fetal cardiac health in pregnant women with GD, allowing early diagnosis of structural changes in the fetal heart..

Key words: mRelative myocardial wall thickness, fetal echocardiography, gestational diabetes.

INTRODUCCIÓN

La hiperglucemia en el embarazo se ha estimado que estuvo presente en el 19,7% de las mujeres con nacimientos vivos a nivel mundial en 2024. De esos, 79,2% corresponden a diabetes gestacional (DG)¹. En Venezuela se ha estimado la prevalencia de DG en 2% a 3%.²

La Asociación Americana de Diabetes (ADA) define actualmente a la DG como una intolerancia a los carbohidratos que se diagnostica en el segundo o tercer trimestre del embarazo, que claramente no era una diabetes establecida previa a la gestación o al comienzo de la misma³. Los criterios para el diagnóstico de DG han cambiado a lo largo de los años. Y aún existen controversias para su aceptación unánime universal.

En Venezuela existe desde 2013, el Protocolo de Salud Materna y Fetal del Ministerio del Poder Popular para la Salud (MPPS), Fondo de población de Naciones Unidas (UNFPA),

Fondo de las Naciones Unidas para la infancia (UNICEF) y Organización Mundial de la Salud (OMS)⁴, en donde se incorporaron los criterios de la Asociación Latinoamericana de Diabetes (ALAD), cuyos valores diagnósticos son los siguientes: glucosa plasmática en ayunas mayor o igual a 100 mg/dl (5,5 mmol/L) y glucosa plasmática mayor o igual a 140 mg/dl (7,8 mmol/L) a las 2 horas poscarga en una Prueba de Tolerancia Oral a la Glucosa con 75 g glucosa (p75).⁵

Los factores de riesgo más frecuentes de la DG son: 1) Sobrepeso, obesidad y elevada ganancia de peso durante el embarazo, 2) Edad, 3) DG en embarazos anteriores, 4) Historia familiar de DM tipo 2, particularmente si es de primer grado, 5) Antecedente de recién nacidos macrosómicos, 6) Pertenencia a grupos étnicos asiáticos, afro-descendientes, nativos norteamericanos y latinos, 7) Preeclampsia y otros tipos de hipertensión arterial. En presencia de DG, se aumenta el riesgo perinatal, particularmente en lo referente a la macrosomía y sus consecuencias, como los traumatismos durante el parto, También hay repercusiones maternas como síndromes hipertensivos, parto pretérmino y la práctica de cesáreas.⁶

Las mujeres con DG en embarazos previos, además del alto riesgo de desarrollar diabetes, e independiente del mismo, tienen doble peligro de enfermedad cardiovascular comparadas con las mujeres sin este antecedente. Así mismo, presentan un incremento de los de factores de riesgo convencionales, como son: cifras elevadas del IMC, el perímetro de cintura, la presión arterial sistólica y diastólica, los valores de glicemia, triglicéridos, colesterol, LDL-c, insulina, Índice HOMA-IR y el descenso significativo de HDL-c; algunos de los cuales pueden estar presentes antes del primer año postparto. Por tanto la DG es una de complicación predictora de riesgo cardio metabólico futuro en mujeres en edad reproductiva, siendo crucial que éstas reciban un seguimiento adecuado por el equipo de salud después del parto.⁷

Igualmente, el riesgo se incrementa para las siguientes generaciones, habiéndose sugerido que modificaciones epigenéticas derivadas de la exposición a un ambiente intrauterino hiperglucémico sea un mecanismo potencial de programación fetal de enfermedades crónicas.6 De allí que se recomiende a este grupo de gestantes realizar un seguimiento y control prenatal estricto, similar a las gestantes con diabetes pregestacional, especialmente en los casos más severos.8

Estudios recientes reportan que mujeres con DG previa no poseen suficientes conocimientos sobre este riesgo derivado de la DG, proporcionando una oportunidad para ejecutar medidas y evaluación de estrategias dirigidas a la prevención. Vencer estas múltiples barreras es aún una tarea pendiente que cumplir, por lo que el conocimiento sobre el riesgo metabólico es una herramienta beneficiosa para la prevención de diabetes y enfermedad cardiovascular en este grupo poblacional de alto riesgo y de su descencendencia.9

La DG no controlada produce también en el feto múltiples alteraciones, iniciando con resistencia a la insulina, cambios inflamatorios y vasculares, que pueden alterar la función y transcripción de genes placentarios y de otros genes que codifican características de la programación fetal, conduciendo finalmente al desarrollo de enfermedades sistémicas a lo largo de su vida tales como intolerancia a la glucosa, síndrome metabólico y enfermedades cardiovasculares. Del mismo modo, las alteraciones sistémicas en el feto producidas por esta entidad pueden afectar de modo negativo su desarrollo y crecimiento global, así como generar un mayor riesgo de lesión cardiovascular fetal. Esto se explica por el efecto directo de la hiperglicemia y el estrés oxidativo materno, que inhiben la expresión de un gen de gran importancia en el desarrollo cardiaco fetal, el gen PAX3, causando posteriormente hipertrofia ventricular cardíaca fetal.10

Conjuntamente, en el corazón fetal, órgano central clave de la respuesta adaptativa, va a generar una respuesta a las alteraciones producidas por la DG y otras agresiones metabólicas, tóxicas, hipoxia, desnutrición o sobrecarga de presión/volumen. Todo esto conlleva a cambios en la estructura y forma del corazón fetal, causando una mayor relación masa-cavidad, evidente cuando produce hipertrofia o hiperplasia de cardiomiocitos para permitir que estas células funcionen en condiciones más eficientes, asegurando el suministro óptimo de sangre a los órganos prioritarios fetales; denominándose a este proceso adaptativo Remodelación Cardíaca (RC).¹¹

El patrón de RC fetal dependerá del tipo de agresión y duración de la exposición a la condición fisiopatológica en que se encuentre el feto y se distinguen en la ecocardiografía fetal ciertos hallazgos generales: 1) cambio de forma de los ventrículos 2) Hipertrofia miocárdica 3) Dilatación de las cavidades. 1¹⁻¹³

Existen dos tipos de RC ventricular fetal, el concéntrico: con aumento del grosor ventricular relativo (hacia la cavidad ventricular), y el excéntrico: con disminución del grosor ventricular relativo. Finalmente, se denomina hipertrofia miocárdica al aumento del grosor miocárdico, un mayor tamaño de las paredes ventriculares y del tabique interventricular al final de la diástole. Las adaptaciones del corazón fetal a las noxas pueden cursar con aumento de la masa y/o dilatación del miocardio. 14,15

Los signos de RC fetal pueden encontrarse en todo el corazón (cardiomegalia), pero estos cambios suelen ser más marcados en el lado derecho ocasionando mayor susceptibilidad a la sobrecarga de presión de este ventrículo en comparación con el izquierdo. En realidad, esto se debe a que el ventrículo derecho actúa como ventrículo "sistémico" en la vida fetal siendo responsable de perfundir los órganos fetales. 12,14

Por lo que es frecuente además observar cambios de tamaño o grosor en el tabique interventricular cardíaco dentro del proceso de la remodelación cardíaca en los fetos de gestantes con DG, debido a presencia de mayor número de receptores de insulina ubicados en él, lo que puede ocasionar miocardiopatía hipertrófica. 15,16

Estos cambios en el corazón fetal generados por la DG son evidentes, siendo ésta reconocida como una de las patologías maternas que generan RC ventricular fetal. En este sentido, podríamos afirmar que las cardiopatías congénitas y la hipertrofia miocárdica son anomalías cardíacas frecuentes en fetos de gestantes diabéticas con incidencia 5 veces mayor que en las gestantes de la población general.¹²

En el diagnóstico y seguimiento de RC tiene un papel importante la ecocardiografía fetal. De allí que, la Asociación Estadounidense del Corazón, recomienda este estudio como principal herramienta para la evaluación detallada del sistema cardiovascular fetal, desde finales del primer trimestre hasta el término de la gestación.¹²

Debido a la posibilidad de establecer con la exploración ecocardiográfica hallazgos de RC ventricular en las distintas estructuras del corazón, e incluso cambios adicionales en las grandes arterias en fetos de gestantes con DG y otras condiciones, este recurso se ha convertido en una excelente opción para la evaluación detallada del corazón fetal, desde su estructura y función hasta el control de los cambios originados por diferentes noxas. Se debe realizar de forma rutinaria entre las 18-22 semanas, sin embargo, algunos autores consideran que la máxima calidad de imagen se logra entre las 28-30 semanas. 17,18

El Grosor relativo de pared de miocardio (GRP) es un parámetro calculable en la práctica ecocardiográfica^{8,15}, permite analizar la distribución de la masa ventricular en función del tamaño y la morfología del ventrículo, además, la identificación de patrones de RC ventricular con hipertrofia concéntrica o excéntrica, siendo un marcador de incremento crónico de poscarga; fenómeno que explica el cambio en el tamaño o en la forma del corazón fetal.^{10,19}

Con este aporte se logra determinar el RC y calcular el GRP miocárdico fetal, así como estudiar otras funcionalidades de la salud cardíaca fetal en la DG y otras condiciones maternas de alto riesgo, siendo la ecocardiografía fetal reconocida cómo un método de estudio imprescindible para el diagnóstico prenatal de cardiopatías congénitas e, indiscutiblemente, para incrementar la vigilancia de la salud fetal integral¹⁶. Esto ha motivado la publicación de estudios en distintos escenarios a nivel mundial con la finalidad de mejorar los resultados perinatales adversos.¹⁸

Palmieri y cols. ¹⁶ evaluaron la prevalencia de miocardiopatía hipertrófica en fetos de gestantes con DG no tratadas, a través de ecocardiografía fetal, encontrando un alto grado de complicaciones cardiacas en estos fetos. Igualmente, en 2020 Martínez García y cols. 20 identificaron la prevalencia de miocardiopatía hipertrofia en fetos de gestantes con DG y, ese mismo año, Crispí y cols. ¹³ determinaron patrones de RC en pacientes con DG a través de la ecocardiografía fetal.

Simultáneamente, González Rodríguez²¹ evaluó la incidencia de cardiopatía en fetos de 108 gestantes con DG a través de ecocardiograma fetal en el segundo y tercer trimestre de gestación. Así mismo, en 2022, Aguilera y cols.²² determinaron la incidencia de cardiopatía en fetos de gestantes con DG en el tercer trimestre de gestación.

En vista de estos hallazgos y que la función, el desarrollo y la remodelación del corazón fetal, están fuertemente vinculados, la evaluación a través de la ecocardiografía fetal de rutina podría ser útil para comprender la adaptación fetal al entorno intrauterino causado por DG, así como identificar tempranamente el RC de aquellos casos con riesgo de enfermedad cardiovascular y remodelado ventricular en la etapa postnatal. Por lo anteriormente expuesto se planteó como objetivo de esta investigación determinar el GRP de miocardio en fetos de gestantes complicadas con DG.

MATERIALES Y MÉTODOS

Se realizó estudio prospectivo, descriptivo y de corte trasversal. La población estuvo constituida por todas aquellas gestantes que acudieron al Servicio de Perinatología Medicina Materno Fetal del Hospital Materno-Infantil "Dr. José María Vargas", en Valencia, desde noviembre 2023 hasta agosto 2024.

La muestra estuvo representada por un grupo de 40 gestantes con DG con evaluación y seguimiento en la Unidad de Diabetes y Salud Reproductiva de la Ciudad Hospitalaria "Dr. Enrique Tejera" de Valencia y 52 gestantes sin diagnóstico de DG. Los criterios de inclusión fueron: gestación simple, con edad gestacional comprendida entre 28 y 39 semanas, (calculada por fecha de última menstruación y ajustada por ultrasonido del primer trimestre del embarazo) y anatomía fetal normal. El diagnóstico de DG fue realizado según criterios de la Asociación Latinoamericana de Diabetes.5 Se excluyeron embarazos múltiples, gestantes en primer y segundo trimestre, fetos con alteraciones estructurales y cromosomopatías, gestantes con diagnóstico de diabetes pregestacional y otras comorbilidades.

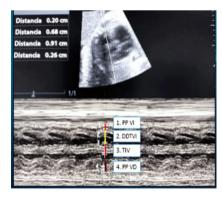

En todas las gestantes se realizó, previo consentimiento informado, ecocardiografía fetal para determinar la presencia de RC a través del valor GRP miocárdico, de acuerdo con las recomendaciones estandarizadas. Se usó equipo de ultrasonido marca Mindray DC7 transductor Convex de 3,5 MHz, se determinó la estática fetal y en un corte axial de tórax a nivel de las 4 cámaras cardiacas en proyección subcostal (figura 1), se colocó el cursor del modo M perpendicular al tabique interventricular justo por debajo del nivel de las valvas auriculoventriculares (figura 2). Se identificó la máxima separación de las paredes ventriculares y de esta manera se obtuvo el diámetro del grosor de la pared libre del ventrículo izquierdo, ventrículo derecho y tabique interventricular, así como el diámetro de ambas cámaras ventriculares desde el endocardio de la pared libre del ventrículo correspondiente al endocardio del lado correspondiente del tabique interventricular y pared ventricular posterior al final de diástole (figura 3). Se determinó el grosor relativo pared de miocardio a través de la fórmula: Grosor pared septal + grosor libre/diámetro transverso ventricular. 12

Fig. 1. Ecocardiografía fetal, Eco fotograma en 2D, Corte axial del tórax fetal, vista de cuatro cámaras del corazón en proyección subcostal.

Figura 2. Corte de cuatro cámaras (proyección subcostal). Cursor del modo M perpendicular al tabique I/V, justo por debajo de las válvulas A/V.

Figura 3. Trazado ecocardiográfico en modo M que permite medir el grosor de la pared libre del VI, VD y TIV, diámetros de ambas cámaras ventriculares desde el endocardio de la pared libre hasta el endocardio del tabique, correspondiente al final de la diástole.

Los datos fueron vaciados en una hoja de cálculo Excel distinguiendo ambos grupos como fetos de gestantes con DG y fetos de gestantes sin DG. Para el análisis estadístico

se usaron pruebas de medida de tendencia central para cálculo de media, desviación estándar y varianza. Se aplicó prueba de normalidad de Shapiro Wilk para determinar si los datos seguían una distribución normal, y según ese resultado se aplicó una prueba paramétrica para muestras independientes como la T Student, nivel de significancia 0,05. Grado de libertad 1, a partir del Programa Estadístico Computarizado software Libre Past 4.13.

RESULTADOS

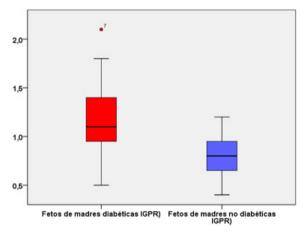

A las 92 gestantes que cumplieron con los criterios de inclusión, se les determinó el GRP de miocardio. En la tabla 1 se presentan las medidas de tendencia central del GRP de miocardio de fetos en gestantes con DG y gestantes sin DG.

Tabla 1. Medias, desviaciones estándar del GPR miocardio de los fetos.

N	Medias	DE	Varianza
DG (n=40)	1,17	±0,34	0,12
Sin DG (n=52)	0,79	±0,20	0,04
Total (n=92)	-	-	-

DE: desviación estándar; DG: diabetes gestacional

En el grupo de gestantes con DG se obtuvo una media del GRP de la pared ventricular fetal igual a 1,17 \pm 0,34, y varianza de 0.12 que resultó mayor a la del grupo de gestantes sin DG, donde la media fue 0,79 \pm 0,20, varianza 0.04 (gráfico 1).

Gráfico 1. Comparación de medias del GRP miocardio de los fetos de gestantes con DG y gestantes sin DG.

Para evaluar si los datos seguían una distribución normal se aplicó la prueba de normalidad de Shapiro Wilk, arrojando un valor de W: 0,96 y un p-valor de 0,16 en el grupo de fetos de gestantes sin DG, mientras que en el grupo de fetos de gestantes con DG arrojó un valor de w: 0,98 y un p-valor de 0,71, para nivel de significancia de 0,05, indicando que los datos siguen una distribución normal.

La prueba T de Student-Fisher mostró un valor $t: 6,50 \ y$ un valor critico de 1,98, y como el valor absoluto calculado de t es mayor que el valor critico de t para α : 0,05, esto indica

que existe diferencia estadísticamente significativa entre las medias del GRP de pared de miocardio en fetos de gestantes con DG y fetos de gestantes sin DG con p < 0,005; por lo que se incrementa la probabilidad de remodelado ventricular cardíaco fetal en estas gestantes con DG, con un nivel de confianza del 95% y un margen de error del 5%.

DISCUSIÓN

La DG es la complicación metabólica más común en el embarazo y se asocia con riesgos a corto y largo plazo para la salud materna y fetal. Los fetos de gestantes con DG tienen mayor incidencia de enfermedad cardiovascular en la vida postnatal hasta la edad adulta, en comparación con aquellos que no han estado expuestos intrauterinamente a un ambiente hiperglucémico. Los fetos de gestantes con DG tienen una mayor probabilidad de desarrollar cardiopatías, debido a la acción de la insulina que actúa como una hormona anabólica primaria de crecimiento fetal ocasionando macrosomía y visceromegalia a nivel cardiaco.¹⁸

El corazón fetal puede adaptarse a un entorno prenatal adverso cambiando únicamente su forma, por ejemplo, volviéndose más esférico para reducir el estrés de la pared ventricular, induciendo así la remodelación cardiaca¹³. La ecocardiografía fetal representa la principal herramienta para el diagnóstico y evaluación detallada del sistema cardiovascular fetal¹⁹. El RC detectado durante el período prenatal puede persistir durante toda la vida. Esta remodelación parece ser un factor de riesgo independiente de morbilidad y mortalidad cardiovascular en adultos¹³. En las últimas décadas, los avances tecnológicos en la evaluación del corazón fetal han permitido, junto con la evaluación morfológica cardíaca, el estudio de estos finos cambios subclínicos que permiten orientar o establecer el inicio de alteraciones del miocardio.¹²

En la investigación realizada por Palmieri y cols. 16 se evaluaron fetos de gestantes con DG, donde el 54% desarrolló miocardiopatía hipertrófica, concluyendo que existe asociación entre miocardiopatía hipertrófica y DG, con resultados similares a los de nuestra investigación donde se evidencia RC en fetos de gestantes con DG.

Martínez García y cols.²⁰ describen una fuerte asociación de presentar cardiopatía congénita y cambios estructurales en el corazón de fetos de gestantes diabéticas, reportándose anomalías cardiacas en 78% de los casos, mientras que los fetos de gestantes sin DG sólo se encontraron en 5% de los casos. Contrario al presente trabajo, donde no se encontró asociación con otras cardiopatías en fetos de gestantes DG.

De igual manera, el estudio de Crispí y cols. 13 concluye que los principales cambios estructurales de RC son: corazón de forma globular, hipertrofia sin dilatación e hipertrofia con cardiomegalia, siendo más característico en DG los patrones de hipertrofia sin dilatación. Igualmente a lo demostrado en nuestro estudio donde hubo un mayor incremento de

remodelado ventricular cardíaco concéntrico caracterizado por hipertrofia sin dilatación en fetos de gestantes con DG.

En un estudio realizado por González Rodríguez²¹ se incluyeron a gestantes con diagnóstico de DG y gestantes con diabetes mellitus tipo 2, representando en 83% y 17% respectivamente, para un total de 108 gestantes. En 94 fetos no se encontró ninguna alteración, clasificándose como fetos sanos, sólo encontraron 14 fetos con alguna anomalía cardiaca mediante ecocardiografía. Resultado distinto a nuestra investigación donde identificamos mayores cambios estructurales en el corazón de fetos de gestantes con DG, como lo fue corazón globular e hipertrofia concéntrica.

Así mismo, en el estudio de Aguilera²² incluyeron fetos de gestantes sin DG y fetos de gestantes con DG, reportando que los fetos de gestantes con DG, en comparación con los fetos de gestantes sin DG, presentaron cambios estructurales: corazón globular, con esfericidad y remodelado ventricular, concordando con nuestros resultados y evidenciando RC en fetos de gestantes con DG, al incrementarse el GRP del miocardio como posible respuesta adaptativa a la hiperglucemia.

La remodelación cardiaca puede ocurrir en cualquier etapa de la vida, sin embargo, la remodelación cardiaca postnatal puede revertirse después de tratar la causa. Mientras que el RC que ocurre en el útero puede persistir postnatalmente, incluso después de que el desencadenante haya desaparecido. Este fenómeno se explica por la hipótesis de la programación fetal, que postula que las agresiones en el útero ocurren en una etapa crítica del desarrollo y que los cambios estructurales persistirán postnatalmente, estableciendo una mayor susceptibilidad a las enfermedades cardiovasculares en la edad adulta.¹³

CONCLUSIONES

En nuestra investigación evidenciamos que los fetos de gestantes con DG muestran una mayor proporción de hipertrofia miocárdica con tamaño cardiaco conservado, forma globular del corazón con aumento del GRP miocárdico fetal, con una media igual a 1,17 \pm 0,34, que resultó significativamente mayor al del grupo de gestantes sin DG, donde la media fue 0,79 \pm 0,20.

La evaluación del GRP mediante ecocardiografía fetal es una técnica fácilmente reproducible que permite determinar cambios estructurales de manera precoz, presencia de RC como respuesta adaptativa a los cambios fisiopatológicos de la DG, permitiendo reducir la incidencia de complicaciones perinatales y mejorando así los resultados neonatales. Identificar la remodelación cardiaca fetal a través de la ecocardiografía podría ser una oportunidad para mejorar la salud cardiovascular postnatal, mediante el diagnóstico precoz, constituyendo una herramienta indispensable para la prevención de enfermedades cardiovasculares en la edad adulta.

REFERENCIAS

- International Diabetes Federation. Diabetes Atlas 11th Edition 2025. diabetesatlas.org ISBN: 978-2-930229-96-6.
- Brajkovich I, Febres Balestrini F, Camejo M, Palacios A; Sociedad Venezolana de Endocrinología y Metabolismo, Sociedad de Obstetricia y Ginecología de Venezuela y Sociedad Venezolana de Medicina Interna. Manual venezolano de diabetes gestacional. Rev Venez Endocrinol Metab [Internet]. 2016 [consultada febrero 2017]; 14(1):56-90. Disponible en: https://www. svemonline.org/wp-content/ uploads/2016/04/revistasvem-vol-14-1-2016.pdf.
- American Diabetes Association. Management of Diabetes in Pregnancy: Standards of Care in Diabetes. *Diabetes Care*. 2025;48(Suppl. 1): S306–S320 | https://doi.org/10.2337/dc25-S015.
- 4. Ministerio del Poder Popular para la Salud (MPPS), Fondo de Población de Naciones Unidas (UNFPA), Organización Mundial de la Salud (OMS), Fondo de las Naciones Unidas para la Infancia (UNICEF). Protocolos de atención. Cuidados prenatales y atención obstétrica de emergencia. [Internet]. 2013. Disponible en: https://www.unicef.org/venezuela/ informes/protocolos-de-atencion-cuidados-prenatales-yatencion-obstetrica-de-emergencia.
- Asociación Latinoamericana de Diabetes. Guías de Diagnóstico y Tratamiento de Diabetes Gestacional 2016. Rev ALAD. 2016; 6:155-169.
- Rivas-Blasco Aleida M, Diabetes en la mujer: El Embarazo. Editorial Manuel Barrero. Valencia, Venezuela. 2023. ISBN: 9798861781602.
- Rivas-Blasco A, Gonzalez JC. Gestational diabetes: an early window of future cardio-metabolic risk. Endocrinology Diabetes Clin Exp 2021; XVIII: 2247 – 2254.
- Sociedad Española de Ginecología y Obstetricia, Grupo Español de Diabetes y Embarazo. Diabetes mellitus y embarazo. Guía de práctica clínica actualizada 2021. Prog Obstet Gineco. 2022; 65:35-41. Disponible en: https://sego.es/ documentos/progresos/v652022/n1/05Diabetesmellitusyemba razogpca2021.pdf.
- Rivas-Blasco A, González J.C. Conocimientos en mujeres con DG previa. Rev ALAD.2021;11:7-17. DOI: 10.24875/ ALAD.20000034.
- Muñoz H, Palermo M. Ecocardiografía fetal del tamizaje al tratamiento Madrid P, Editorial: AMOLCA; 2023 sección II 57-203.
- Lawson TB, Scott-Drechsel DE, Chivukula VK, Rugonyi S, Thornburg KL, Hinds MT. Hyperglycemia Alters the Structure and Hemodynamics of the Developing Embryonic Heart. J Cardiovasc Dev Dis [Internet]. 2018;5(1):13. Doi:10.3390/ jcdd501 0013.
- Góngora-Gómez O. Importancia de la ecocardiografía fetal en el diagnóstico de malformaciones cardíacas congénitas. CorSalud [Internet]. 2020;12(4):1. Disponible en: https://revcorsalud.sld.cu/index.php/cors/article/view/450.

- Crispi F, Sepúlveda-Martínez Á, Crovetto F, Gómez O, Bijnens B, Gratacós E. Main Patterns of Fetal Cardiac Remodeling. Fetal Diagn Ther [Internet]. 2020;47(5):337-344. Doi:10.1159/00 0506047.
- Sociedad Española de Ginecología y Obstetricia. Guía de la exploración ecográfica del corazón fetal. *Prog Obstet Gineco* [Internet]. 2020; 63:365-402. Disponible en: https://sego.es/ documentos/progresos/v63-2020/n6/0420Guiadelaexploracio necografi cadelcorazonfetal.pdf.
- Protocolos Medicina Materno fetal Hospital Clinic- Hospital Sant Joan De Deu- Universitat de Barcelona. Protocolo Ecocardiografía Funcional Fetal. Disponible en: https://ve.scielo. org/scielo.php?script=sci_arttex&pid=S1690-31102016000 11-20
- Palmieri CR, Simões MA, Silva JC, Santos AD, Silva MR, Ferreira B. Prevalencia de miocardiopatía hipertrófica en fetos de madres con diabetes gestacional antes de iniciar el tratamiento. Rev Bras Ginecol Obstet [Internet]. 2017;39(1):9-13. Doi: 10.1055/s-0037-15 98602.
- Herrera M, Cafici D, Mejides A & Ximenes R. Guías Prácticas ISUOG (actualizada): evaluación ecográfica de tamizaje del corazón fetal. *Ultrasound Obstet Gynecol* [Internet]. 2013;41: 348–359. Doi: 10.1002-uog.12403.
- Nomura P. Importancia de la ecocardiografia fetal en madre diabética. Sociedad Interamericana de Cardiologia Web. [Internet]. 2020.[Visitado 15 Ene 2024]. Disponible en: https://www.siacardio.com/consejos/pedriatia/car diologiafetal/la-importancia-de-la-ecocardiografia-fetal-en-la-madrediabetica/.
- Gratacos E, Galindo A, Martínez J. Concepto y ámbito de la cardiología fetal. En: Galindo A, Gratacos E, Martínez. J. Cardiología fetal. Madrid: Marban; 2015.
- Martínez-García J, Vega-Meza M, Martínez-Felix N, Inzunza-Manjarrez G, Quibrera-Matienzo J. Principales malformaciones cardiovasculares en hijos de madres diabeticas. *Rev Med UAS* [Internet]. 2020;10(3):118-126. http://dx.doi.org/10.28960/revmeduas.2007-8013.v10. n3.003.
- González-Rodríguez, M. Incidencia de cardiopatía en fetos de madres diabéticas durante el segundo y tercer trimestre de gestación. México: Universidad Autónoma México, Ginecología y Obstetricia en diabéticas. Rev Med UAS [Internet] .2020;10(3). Disponible en: http://hdl.handle. net/20.500.11799 /111509.
- Aguilera J, Lucchini H, Charakida M, Nicolaides K, Fux-Otta C. Rol de la ecocardiografia materna y fetal en gestante con diabetes gestacional. Fasgo [Internet]. 2023;23(2):15-28. Disponible en: https://www.fasgo.org.ar/images/Revista_2022_16.pdf.
- Muñoz H, Enríquez G, Ortega X, Pinto X, Hosiasson S, Germain A, et al. Diagnóstico de cardiopatías Congénitas: Ecografía de Cribado, ecocardiograma fetal y medicina con precisión. Rev. Med Clinic. Condes [Internet]. 2023.
- Hernández-Sampieri R, Collado C, Baptista L. (Eds.). Metodología de la investigación. (6a ed.). México: McGraw-Hill2014. pp.2-29. ISBN: 978-1-4562-2396-0.