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aDepartamento de Sistemas de Control, Facultad de Ingenierı́a, Universidad de Los Andes, Venezuela.
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Abstract.-

The contribution of this work is focused on the analysis and synthesis of stabilizing controllers based on static
output feedback (SOF), for a class of descriptor linear parameter variable (LPV) systems. Descriptors systems,
called also: differential-algebraic systems, singular systems, semi-state systems or generalized state-space systems;
are considered to possess disturbances and parametric uncertainties of polytopic type, as are described by the
following equation:

E(ρ)ż(t) = F (ρ)z(t) + B(ρ)ω(t) + Bu(t), h(t) = C(ρ)z(t),

where ρ is a parametric variation. From a condition of existence of a linear injective application, representing the
generalized inverse matrix of E, the original descriptor system is transformed to a LPV system. Then, the condition
for the static output feedback on the LPV system is analyzed. Synthesis of the SOF-based controller is obtained
considering performance indices in H2 and H∞, described as linear matrix inequalities, LMIs, as criteria in order
to obtain the gain of SOF, in the presence of uncertainties and disturbances. A numerical example is presented to
illustrate the results and performance of robust control.

Keywords: descriptor systems; LPV systems; static output feedback (SOF); H2-H∞ norms; robust control.

Sobre la admisibilidad de sistemas LPV descriptores

Resumen.-

La contribución de este trabajo está centrada en el análisis y sı́ntesis de controladores estabilizantes, basados en
realimentación estática de la salida (SOF), para una clase de sistemas descriptores lineales a parámetros variantes
(LPV). Los sistemas descriptores, denominados también: sistemas diferencial-algebraicos, sistemas singulares,
sistemas de semi-estado o sistemas generalizados de espacio de estado; se consideran que presentan incertidumbres
paramétricas de tipo politópicas y perturbaciones, tal como se describe por la ecuación siguiente:

E(ρ)ż(t) = F (ρ)z(t) + B(ρ)ω(t) + Bu(t), h(t) = C(ρ)z(t),

donde ρ es la variación paramétrica. A partir de una condición de existencia de una aplicación inyectiva lineal,
representando la inversa generalizada de la matriz E, el sistema descriptor original es transformado a un sistema
LPV. Luego, se analiza la condición para la realimentación estática de la salida sobre ese sistema LPV. La sı́ntesis
del controlador por SOF se obtiene considerando ı́ndices de desempeño en H2 y H∞, descritos como desigualdades
matriciales lineales, LMIs, como criterios para obtener la ganancia de SOF, bajo la presencia de incertidumbres
y perturbaciones. Para ilustrar los resultados y el desempeño del control robusto, se presentan dos ejemplos
numéricos.
Palabras clave: sistemas descriptores; sistemas LPV; realimentación estática de la salida; normas H2-H∞;
control robusto.
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1. Introduction

Since its introduction in 1977 [1], descriptor
systems (DS), also called singular systems, semi-
state systems, differential-algebraic systems or
generalized state-space systems; have been one
of the main research fields within control theory,
since they are a natural and general representation
of dynamic systems. Unlike their regular counter-
parts in state space, a DS allows a representation
that incorporates algebraic constraints in their
physical variables. Over the past two decades,
descriptor systems have attracted much attention
because of the comprehensive uses in many real
world systems, such as in the economy (Leontief
dynamic model), social models, electrical systems,
chemical processes, and mechanical models (robo-
tics). Considerable progress has since been made
in the investigation of such systems. A problem
that has been well studied is the admissibility of
DS, being a research line that still remains open.

On the other hand, the context of linear pa-
rameter variable (LPV) systems refers to linear
dynamical systems whose state-space representa-
tions depend on exogenous non-stationary para-
meters [2]. LPV systems are a generalization of
LTV systems, establishing an intermediate model
between linear and nonlinear dynamics, so they
can be constituted in a representative model for
the control of non-linear processes, allowing the
use of all machinery of control of linear systems
to the case of particular nonlinear processes
control [3, 4]. In addition, if the nonlinear model
is formulated as a parameterized linear system,
where parameterization is state dependent, it
allows an LPV description to represent a non-
local nonlinear system, taking advantage of the
consequences of a global stabilization [5, 4]. Thus,
the LPV representation of a nonlinear system
describes a class of systems larger than the original
nonlinear system.

When there are combined the modeling of
physical systems with uncertain parameters, there
arise dynamic systems that represent uncertain DS.
As is well known, for modeling many applica-
tions and technical processes, only approximate
models are available, so that the analysis of DSs

subject to uncertainties has been a very active
research line. For example, numerous analysis
and synthesis problems have been addressed in
the literature: the analysis of robust stability
(admissibility), stabilization, analysis of the robust
controllability and observability, robust control
under the characterization of the H∞-H2 norms,
robust filtering, analysis and positive real control,
among other lines of work, [6, 7, 8, 9]. The
main results in the analysis and synthesis of DS-
dependent parameters are based on parametric
Lyapunov functions, which allow to minimize the
conservatism of classic Lyapunov functions, when
searching numerical solutions through LMIs, re-
presenting a formulation that allows the resolution
of complicated control problems very efficiently,
and with a remarkable degree of simplicity [10, 9].

In this context, this paper addresses the analysis
of robust admissibility and control for an DS
class of continuous time and with polytopic type
uncertainties in the dependent parameters, by
using the characterizations of the H2-H∞ norms
as LMIs, which arise from parameter dependent
Lyapunov functions. The DS class is the one
where there is a linear injection application that
allows to transform the parameter dependent DS
to a regular LPV system. The existence of linear
transformation ensures that the analysis of the
properties results of the transformed LPV system
are transferred to the finite modes of the original
parameter dependent DS. Likewise, the robust
control design, for the transformed LPV system,
is a guarantee of satisfying the admissibility and
robust performance for the original DS system.
Thus, the condition for the static output feedback
(SOF) on the transformed LPV system is analyzed.
The SOF controller synthesis is obtained by
considering performance indexes in H2 and H∞,
described as LMIs, as criteria to obtain the
extended SOF gain, which considers a feedback
gain for the output, and a feedback gain for its
derivative.

Notation. < is the set of real numbers. For a
matrix A, AT denotes its transpose. tr(A) defines
the trace of the matrix A. In symmetric matrices
partitions ? denotes each of its symmetric blocks.
I defines the identity matrix of appropriate dimen-
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sion. L2 is the Hilbert space of vectorial signals
defined on (−∞,∞), with scalar product < x | y >=∫ ∞
−∞

x(τ)∗y(τ)dτ and such that ‖ x ‖2 , < x | x >1/2

< ∞, ∀x ∈ L2.

1.1. Preliminaries
Important results that must be taken into ac-

count, since they will be used in the develop-
ment of the proposed technique, correspond to
the extended characterizations as linear matrix
inequalities (LMI)s of the H∞ and H2 norms for
linear systems [11, 12].

Consider the LTI system defined by

ẋ = Ax + Bω
y = Cx + Dω (1)

Lemma 1 (Relaxed H2 performance).
Consider the system (1), where D = 0. For
P = PT > 0, the following statements are
equivalent:

i) A is stable and
∥∥∥C(sI − A)−1B

∥∥∥2

2
< µ.

ii) There exist P and Z, such that: tr(Z) < 1 and[
AT P + PA PB

BT P −µI

]
< 0,

[
P CT

C Z

]
> 0(2)

iii) There exist P,Z and G, such that: tr(Z) < 1
and
−(G + GT ) GT A + P GT B GT

ATG + P −P 0 0
BTG 0 −µI 0

G 0 0 −P

 < 0,

(3)[
P CT

C Z

]
> 0

iv) There exist P,Z and G, such that: tr(Z) < 1
and −(G + GT ) GT A + P + GT GT B

ATG + P + G −2P 0
BTG 0 −µI

 < 0,

(4)[
P CT

C Z

]
> 0

Proof:
The equivalence between the three first statements
has been shown in Theorem 3.3 of [13], which
is based on projection lemma and its reciprocal
version. The equivalence between ii) and iv) is
shown in [11]. �

For the stability analysis, one knows that when
exists relations between the system dynamic ma-
trix and the Lyapunov matrix, the results that
are obtained are very conservative, as it is the
case of systems with politopical uncertainties
[14]. This situation can be resolved, in certain
degree, uncoupling both matrices. In addition,
the declaration iv) in the Lemma 1 provides
an improved representation of the condition of
performance in H2 presented in [13].

Similarly for the H2 case, there are some results
to improve performance in H∞, from improved
versions of Bounded Real Lemma, as shown
below.

Lemma 2 (Relaxed H∞ performance).
Consider the system (1). For P = PT > 0
and the matrix G, the following statements are
equivalent:

i) A is stable and
∥∥∥C(sI − A)−1B + D

∥∥∥
∞
< γ

ii) There exist P, such that

A
T P + PA PB CT

BT P −γ2I DT

C D −I

 < 0 (5)

iii) There exist P and G such that, for τ � 1


−(G + GT ) GT A + P + τGT 0 GT B

ATG + P + τG −2τP CT 0
0 C −I D

BTG 0 DT −γ2I

 < 0(6)

Proof:
Conditions i) and ii) are the well known Bounded
Real Lemma. Equivalence between ii) and iii) can
be seen in [11]. �
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2. Descriptor systems and LPV systems

2.1. Descriptor systems

The DS systems, also called singular systems,
semi-state systems, differential-algebraic systems
or generalized state-space systems; have been one
of the main fields of control theory research since
its introduction in [1]. Over the last two decades,
the DSs have attracted much attention due to the
comprehensive uses in the economy, such as the
Leontief dynamic model, in electrical systems,
chemical processes, and mechanical models. Since
then, considerable progress has been made in the
investigation of such systems [8].

An DS is dynamically defined by

Eż(t) = F z(t) + Bu(t),
h(t) = Cz(t) (7)

where z(t) ∈ Rn is the vector of descriptor variable
(instead of state vector), E ∈ Rm×n, with m ≤ n and
rank(E) = r ≤ n and which is called the descriptor
matrix; and F ∈ Rm×n, B ∈ Rm×l, C ∈ Rp×n; the
control function u belonging to L2(0, τ;Rl).

If m = n and if for all t ∈ [0, τ], the polynomial
p(s) = det (sE − F ) satisfies that p(s) , 0, it is
said that the pair (E,F ) is regular. Otherwise, it is
called singular.

The solution and many of the properties of a free
DS (u = 0) can be characterized in terms of the
Weierstraß canonical form [15, 8], which allows
to transform the matrix E into a Jordan canonical
form, with a finite number of eigenvalues (finite
dynamic mode), plus a nilpotent matrix, also in
Jordan canonical form, representing a number
of infinite eigenvalues (impulsive mode). The
nilpotency index of the nilpotent matrix is called
system index. If E is non-singular, the system is
said to have zero index.

Definition 3. Consider the system (7), and be κ =

deg(det(sE − F )). If κ = r is said that the DS is of
free impulse.

Thus, the DS (7) has κ finite dynamic modes,
r − κ impulsive modes, and n − r non-dynamic
modes.

Definition 4. Let the DS given by (7), with E,F ∈
Rn×n, B ∈ Rn×l and C ∈ Rp×n. In addition, be the
matrices: T and S,with img T = ker ET , img S =

ker E.

i) For the triplet (E,F , B) is said that the system
is of stabilizable finite dynamics if rank[λE −
F , B] = n ∀λ ∈ C+.

ii) For the triplet (E,F , B) is said that the system
is impulse controllable if rank[λE,F S, B] =

n.

iii) For the triplet (E,F , B) the system is said to be
strongly stabilizable if i) and ii) are satisfied.

iv) For the triplet (E,F ,C) is said that the system
has detectable finite dynamics if rank[λET −

F T ,CT ] = n ∀λ ∈ C+.

v) For the triplet (E,F ,C) is said that
the system is impulse observable if
rank[λET ,F TT,CT ] = n.

vi) For the triplet (E,F ,C) the system is said to be
strongly detectable if iv) and v) are satisfied.

A controllability analysis for DS is presented in
[16, 17]. In that order of ideas, in [18] a study of
the controllability condition for a semilineal non-
autonomous DS, by transforming the system from
a linear injective application, is presented.

Theorem 5. Let the system (7), with the pair
(E,F ) regular; and let u = 0.

1. The trivial solution z = 0 of the system is
stable if and only if all the finite eigenvalues
of λE−F are in the closed left half-plane and
the eigenvalues on imaginary axis are simple.

2. The trivial solution z = 0 of the system is
asymptotically stable if and only if all the
finite eigenvalues of λE − F are in the open
left half-plane. This means that finite dynamic
modes are asymptotically stable.

Proof:
See [19, 7]. �

The asymptotic stability of DS (7) can be
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characterized by a generalized projected Lyapunov
equation given by:

ETXF + F TXE = −Q, (8)

which has a unique solution X corresponding to a
positive semi-definite symmetric matrix, and Q is
a positive definite matrix.

Definition 6. Consider the system (7). It is said
that the DS is admissible if it is regular, free
impulse and stable.

Definition 6 allows to establish conditions for
the control of DS in the sense of its stabilization
[10]. Indeed:

1. For the triplet (E,F , B) is said that the system
has stabilizable finite dynamics and impulse
controllable if a matrix K exists such that the
pair (E,F + BK) is admissible.

2. For the triplet (E,F ,C) is said that the system
is of finite dynamics detectable and impulse
observable if a matrix L exists such that the
pair (E,F + LC) is admissible.

On the other hand, if the system (7) is regular
and free impulse, through the algebraic-differential
manipulation of the non-dynamic modes, it is
possible to obtain a system descriptor of the form

Eż(t) = Fz(t) + Bu(t),
h(t) = Cz(t) (9)

where E ∈ <r×n, F ∈ <r×n and B ∈ <r×m,
representing the dynamic modes of the original
system. Thus, the admissibility problem of the
system (7) is equivalent to the admissibility of the
system (9).

For example, be the descriptor system[
e1 e2

0 0

]
ż =

[
a1 a2

b1 b2

]
z +

[
1
0

]
u +

[
1
1

]
ω (10)

with e1, e2 , 0. This system is regular and free
impulse, with r = 1. Thus, from the non-dynamic
modes we obtain the DS given by[

e1 e2

]
ż =

[
a1 − b1 a2 − b2

]
z + u (11)

for which the admissibility problem corresponds to
the admissibility of the original DS. The procedure
is extended to higher order DS.

2.2. LPV systems

The context of LPV systems refers to linear dy-
namical systems whose state space representations
depend on non-stationary exogenous parameters
[2]. LPV systems are a generalization of LTV sys-
tems, establishing an intermediate model between
linear and nonlinear dynamics, so that they can
be constituted in a representative model for the
control of non-linear processes, allowing the use of
all machinery to control linear systems to the case
of to design controllers for particular nonlinear
processes [3, 4].

Definition 7. An LPV is a dynamic system in
which matrices contain functions that depend on
a vector of known variant parameters.

According to Definition 7, a representative LPV
model is of the form:

ẋ(t) = A(ρ(t))x(t) + B(ρ(t))u(t); x(t0) = x0

y(t) = C(ρ(t))x(t) (12)

where x(t) ∈ <n are the states, u(t) ∈ <p are the
controls and y(t) ∈ <q are the measured output.
ρ(t) : R+ → R

l. If ρ(t) = t, l = 1, the LPV model
describes an LTV system.

From a practical point of view, an LPV system
has at least two interesting interpretations [20]:

1. It can be seen as a LTI system with parametric
uncertainty, where the uncertainty is given by
the time variant parameter ρ(t).

2. It can be seen as a LTV model, or a model
resulting from the linearization of a nonlinear
system (NLS) along the trajectories of the
parameter ρ, applying extended linearization
or based-on velocity linearization, which
allows to apply the very well known methods
and techniques of analysis and synthesis of
linear systems.

The typical constraints on exogenous parame-
ters are limits on magnitudes and their indexes of
variations, that is, ∀t ≥ 0

ρ ≤ ρ(t) ≤ ρ̄, µ ≤ ρ̇(t) ≤ µ̄ (13)
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2.2.1. Polytopical LPV systems
Consider the system (12). That system can be

characterized as a polytope if it is defined

P :=
(

A(ρ) B(ρ)
C(ρ) 0

)
∈ Ω. (14)

where Ω is a polytopic set, which is defined as:

Ω :=

P : P =

l∑
i=1

ρiPi; ρi ≥ 0;
l∑

i=1

ρi = 1

 (15)

so that any admissible matrix P of the system
can be written as an unknown convex combination
of l vertex matrices given, such that

Pi =

(
Ai Bi

Ci 0

)
(16)

where Ai, Bi, Ci, i = 1, . . . , l, are given matrices,
representing the polytope vertices. Thus, this
system can be characterized by the convex hull of
Ω considering the vertices of the polytope, i.e.

Co Ω =

{(
A1 B1

C1 0

)
, . . . ,

(
Al Bl

Cl 0

)}
. (17)

where these matrix vertices are known, provided
that ρi ∈ <, ρi ≥ 0, i = 1, . . . , l,

∑l
i=1 ρi = 1.

Consequently, from the dependence of the
system matrices with respect to the ρ parameter,
and from the membership of those matrices to the
polytope Ω, then, with x(t0) = x0:

ẋ(t) =

 l∑
i=1

Aiρi

 x(t) +

 l∑
i=1

Biρi

 u(t);

y(t) =

 l∑
i=1

Ciρi

 x(t) (18)

where ρi ∈ <, ρi ≥ 0, i = 1, . . . , l,
∑l

i=1 ρi = 1.
The controllability and observability conditions

of these systems can be analyzed in [21, 5]
and [22]. The stability and robust stabilization of
polytopic LPV systems can be studied in [23, 2],
as well in [24, 22].

3. Problem formulation

Consider an DS as (7), but with parametric
uncertainty and perturbations, that is:

E(ρ)ż(t) = F (ρ)z(t) + B1(ρ)ω(t) + Bu(t)
h(t) = C(ρ)z(t) +D1(ρ)ω(t) (19)
y(t) = C2z(t)

which constitutes an LPV descriptor system.
There, u(t) ∈ <q are the controls; ω(t) ∈ <d

are disturbances; h(t) ∈ <p are the controlled
outputs and y(t) ∈ <p are the measured outputs.
The parametric variation ρ is assumed to meet the
constraints defined in (13). E ∈ Rm×n, and for all ρ,
rank(E) = r < n. It can be assumed that r = m,
so that the system is of the form given by (9),
with parametric uncertainties. The matrices F , B1,
B, C, D and C2 are of appropriate dimensions. In
addition, for all ρ, it is assumed that:

1. For the triplet (E(ρ),F (ρ), B), the finite dyna-
mics of the system is stabilizable and impulse
controllable.

2. For the triplet (E(ρ),F (ρ),C2), the finite
dynamics of the system is detectable and
impulse observable.

The above conditions lead to solutions to the
stability and robust performance problem for the
system (19). B and C2 are matrices known for the
fact that they characterize, from a practical point
of view, the actuators and sensors, respectively,
which are the suitably selected devices in the
control systems.

The study of the robust stabilization of DS
type LPV has been reported in [6, 15, 25, 26,
27]. In these contributions the controllers are
state feedback type and the uncertainty is usually
assumed only in the dynamic matrix. In [28, 29]
and in [30] output feedback is applied, again in
models with very particular uncertainties. Finally,
in [10, 9] SOF is used for the robust stabilization
of a polytopic type DS with the matrix E certain
and undisturbed.

3.1. Robust stabilization and performance pro-
blem

Consider the system (19) with, for all ρ,
(E(ρ),F (ρ), B) defining an stabilizable and
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impulse controllable finite dynamics; and
(E(ρ),F (ρ),C2) is such that the finite dynamics is
detectable and impulse observable.

Problem 8. Design a control u(t) for the system
(19) such that the corresponding closed loop
system will be admissible.

Problem 9. Design a control u(t) for the system
(19) such that the corresponding closed loop
system will be admissible and the effect of the
perturbation ω(t) on the controlled output h(t) will
be minimum in the sense of the H2-H∞ norms.

For Problem 8, relative to robust stabilization,
it is assumed that ω(t) = 0. Next, the problem
9 demands, in addition to robust stabilization, to
satisfy a robust performance index characterized
under the H2-H∞ norms.

4. Main rasults: LPV descriptor systems con-
trol

In this section we present the main results of
the work, which consists in proposing an extended
SOF control that depends on the output and its
derivative. So, be the control of the form:

u(t) = K0y(t) +K1ẏ(t), (20)

where K0 y K1 are the feedback gains, to be
determined, for the output and its derivative. In
this case, the derivative of the output is used in the
context of the derivative action on PID controllers.
Thus, the control will be given by

u(t) = K0y(t) +K1C2ż(t) (21)

There are some aspects that determine the
advantages of this type of controller [24]:

1. If C2 = I, the design is reduced to a typical
state feedback control.

2. If K1 = 0, corresponds to a classic SOF
control.

3. By using the K0 and K1 gains, many systems
that can not be controlled by a classic SOF,
can be stabilized by this way. In addition, it
is easier to implement than a dynamic output
feedback control.

As can be seen in the equation (21), the control
u(t) depends on the dynamics of z(t). In order to
construct the control, a particular class of linear
DSs to variant parameters is assumed, those in
which the following condition is satisfied:

∀ρ, det
(
E(ρ)ET (ρ)

)
, 0 (22)

This means that there is a linear injective applica-
tion Γ(ρ), which represents the generalized inverse
of E(ρ), that is, E(ρ)Γ(ρ)E(ρ) = E(ρ).

Therefore, let the change of variable z(t) =

Γ(ρ)x(t). Consequently, E(ρ)Γ(ρ) = I, then the
system (19) is transformed into an LPV system:

ẋ(t) = A(ρ)x(t) + B1(ρ)ω(t) + Bu(t)
h(t) = C1(ρ)x(t) +D1(ρ)ω(t) (23)
y(t) = CΓ(ρ)x(t)

where

A(ρ) = F (ρ)Γ(ρ) − E(ρ)
∂Γ(ρ)
∂ρ

ρ̇,

which is a parametric matrix that depends on ρ,
ρ̇ that, according to LPV systems, are bounded
parameters; C1(ρ) = C(ρ)Γ(ρ) and CΓ(ρ) =

C2Γ(ρ). The control design for the original system
(19) can be constructed from the transformed
system (23).

Proposition 10. Consider the system (23). If for
all ρ the pair (A(ρ), B) is controlable and the
pair (CΓ(ρ), A(ρ)) is observable, then the system
(19) is of finite dynamic stabilizable and impulse
controlable, and of finite dynamic detectable and
impulse observable.

In fact, the existence of the linear transformation
Γ(ρ) implies that the system (19) is regular and
impulse free: if there exists Γ(ρ), the regular
system (23) is obtained, since the regularity of
(19) depends on the pair (sE(ρ),F (ρ)) be regular,
whose condition becomes the regularity of the pair
(sI, A(ρ)), which is always satisfied. In addition,
(23) is characterized by the dynamic matrix
A(ρ) whose spectrum defines the finite modes of
the system (19). Then, according to the results
shown in [18], the controllability (observability)
properties of the original system are transferred in
the transformed system, that is, if for all ρ:
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1. the triplet (E(ρ),F (ρ), B) defines a system
with finite dynamics stabilizable and impulse
controllable, then the pair (A(ρ), B) is contro-
llable;

2. the triplet (E(ρ),F (ρ),C2) defines a system
with detectable and impulse observable finite
dynamics, then pair (CΓ(ρ), A(ρ)) is observa-
ble.

Following the DS example given by (11), in this
case

Γ =

 e1
e2

1+e2
2

e2
e2

1+e2
2


and the transformed system will be

ẋ =
e1(a1 − b1) + e2(a2 − b2)

e2
1 + e2

2

x + u

Therefore, the problem of admissibility for LPV
type DS becomes a problem of control of LPV
systems. Consequently, let the system (23) and
consider a control law given by the equation (20),
then

u(t) = M−1 (K0CΓ(ρ) +K1CΓ(ρ)A(ρ)) x(t),(24)

whereM = I − K1CΓ(ρ)B.
As can be observed, the existence of the control

depends on the invertibility of the matrixM, which
is a more weak condition with respect to the
conditions for the typical SOF control [24, 22]. In
short, the admissibility problem of the system (19)
corresponds to the synthesis of a control for the
system (23).

4.1. Robust Stabilization

Let the system (23) with the pair (A(ρ), B)
controllable and ω(t) = 0. It is also assumed
that the system supports a polytopic representation
according to (16). Be a control of the form (24),
then the closed loop dynamic matrix is:

Ac = A(ρ) + BM−1 (K0CΓ +K1CΓA(ρ)) ,

where M is a nonsingular matrix, so that M−1

exists, which allows to calculate u(t).

Theorem 11. Let the system (23) with the pair
(A(ρ), B) controllable. There is an extended SOF
control of the form (24) that stabilizes in closed-
loop system, if there existsM non-singular and the
matrix P = PT � 0, and matrices X, Y, Z such that
the following LMI is satisfied

PAi + AT
i P + BXCΓi + CT

Γi
XT BT +

BYCΓi Ai + AT
i CT

Γi
YT BT ≺ 0, (25)

where Ai, CΓi , i = 1, . . . , l, representing the
polytope vertices, then the feedback gains are
obtained from

K0 = MZ−1X (26)
K1 = MZ−1Y (27)

with PB = BZ andM−1 = I + Z−1YCΓ(ρ)B.

Proof:
It is known that for closed-loop stability, there
exists P = PT � 0 such that PAc + AT

c P ≺ 0, then
substituting

PAi + PBM−1K0CΓi + PBM−1K1CΓi Ai + AT
i P+

CT
Γi
KT

0 (M−1)T BT P + AT
i CT

Γi
KT

1 (M−1)T BT P ≺ 0

For the linearization of the matrix inequality, if
PB = BZ and variable changes X = ZM−1K0,
Y = ZM−1K1, the LMI given by (25) is obtained.
Moreover, as M = I − K1CΓ(ρ)B and Z−1Y =

M−1K1, then the expression for M−1 is obtained,
which depends on the numerical solution of the
LMI (25), on known matrices of the system (19),
and on CΓ(ρ), which can be selected from the
central value of ρ. �

It may be noted that Z−1 = (BT B)−1BT P−1B.
Thus, the admissibility problem of the system (19)
is solved by robust stabilization of the system (23).

4.2. Robust stabilization and performance
Let the system (23) with the pair (A(ρ), B)

controllable. This system supports a polytopic
representation according to (16). Be a control
given by (24), then the closed loop system is:

ẋ(t) = Acx(t) + Bcω(t)
h(t) = C1(ρ)x(t) +D1(ρ)ω(t) (28)
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where

Ac = A(ρ) + BM−1K0CΓ(ρ) +

BM−1K1CΓ(ρ)A(ρ)
Bc = B1(ρ) + BM−1K1CΓ(ρ)B1(ρ)

As it has been proposed, it is required to design
K0 andK1 such that Ac be robustly stable, and that
the effect of the perturbation ω(t) on controlled
output h(t) be minimum according to performance
indices in H2 − H∞, which are characterized by
LMIs according to the Lemma 1 and the Lemma
2.

4.2.1. Design in H2

Theorem 12. Let the system (23) with the pair
(A(ρ), B) controllable and D1(ρ) = 0, which
supports a polytopic representation whose vertices
are defined by Ai, B1i , CΓi and C1i . There is a
control law of the form (24), which guarantees a
suboptimal performance in H2 for the closed loop
system (28), if there exist G ∈ <n×n, X ∈ <n×p,
Y ∈ <n×p, Pi = PT

i � 0 ∈ <n×n, W ∈ <p×n such
that tr(W) < 1 and the following LMI is satisfied−G −GT Φ Υ

? −2Pi 0
? ? −µI

 < 0,
[

Pi (C1i)
T

C1i W

]
> 0,

(29)

for i = 1, . . . , l, where Φ = GT Ai + BXCΓi +

BYCΓi Ai + Pi + GT and Υ = GTB1i + BYCΓiB1i .
The feedback gains are:

K0 = MZ−1X (30)
K1 = MZ−1Y (31)

with GT B = BZ andM−1 = I + Z−1YCΓ(ρ)B.

Proof:
Applying clause iv) of the Lemma 1 to the closed

loop system (28), matrix inequalities are obtained.
After, for the matrix inequalities linearization are
used the changes of variables GT B = BZ and
X = ZM−1K0, Y = ZM−1K1, which generate, by
substitution, the LMI (29). �

In this case, Z−1 = (BT B)−1BT (GT )−1B, so that
the gains are obtained from the numerical solution

of the LMI and known matrices of the original
system (19). Consequently, the admissibility with
robust performance of the system (19), has been
solved in the transformed system as a robust
control problem in H2, using extended SOF.

4.3. Design in H∞

Theorem 13. Let the system (23) with the pair
(A(ρ), B) controllable, which supports a polytopic
representation whose vertices are defined by Ai,
B1i , CΓi and C1i . There is a control law of the form
(24), which guarantees a suboptimal performance
in H∞ for the closed loop system (28), if the
following LMI is satisfied
−G −GT Φ 0 Υ

? −2τPi (C1i)
T 0

? ? −I D1i

? ? ? −γ2I

 < 0, (32)

for i = 1, . . . , l, where Φ = GT Ai + BXCΓi +

BYCΓi Ai + Pi + τGT and Υ = GTB1i + BYCΓiB1i;
G ∈ <n×n, X ∈ <n×p, Y ∈ <n×p, Pi = PT

i � 0 ∈
<n×n and τ >> 1. The feedback gains are:

K0 = MZ−1X (33)
K1 = MZ−1Y (34)

with GT B = BZ andM−1 = I + Z−1YCΓ(ρ)B.

Proof:
Considering the closed-loop system (28), the
Lemma 2 is applied. Then, the procedure of
linearization of matrix inequalities is followed by
changes of variables, as has been done for the
proof of the Theorem 12. �

In order to reduce conservatism, in the characte-
rization of the relaxed norms in H2-H∞ as LMIs,
the P matrix does not necessarily have to be uni-
que, so that the matrices Pi = PT

i � 0 can be used.
On the other hand, mixed performance indices
in H2-H∞ can be imposed, so control synthesis,
for robust admissibility and performance in closed
loop, meet multiple objectives.
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4.4. Design using DOF

In order to avoid the selection of CΓ(ρ), from
the central value of ρ, the controller design can be
followed by dynamic feedback output (DOF). In
this case, a dynamic controller is proposed, such
as:

ζ̇(t) = Akζ(t) + Bky(t)
u(t) = Ckζ(t) +Dky(t) (35)

Therefore, for system (23) and the control (35),
the closed loop system is given by(

ẋ(t)
ζ̇(t)

)
=

(
A(ρ) + BDkCΓ(ρ) BCk

BkCΓ(ρ) Ak

) (
x(t)
ζ(t)

)
+(

B1(ρ)
0

)
ω(t)

h(t) = C1(ρ)x(t) +D1(ρ)ω(t) (36)

y(t) = CΓ(ρ)x(t)

The dynamic matrix of the closed loop system
is described by

Ac = A(ρ) +BK0C(ρ) (37)

where

A(ρ) =

(
A(ρ) 0

0 0

)
, B =

(
B 0
0 I

)
,

C(ρ) =

(
CΓ(ρ) 0

0 I

)
, K0 =

(
Dk Ck

Bk Ak

)
.

Thus, K0 can be seen as design gain for a SOF
control problem for the system defined by the A,
B, C matrices. Consequently, Theorem 11 can be
applied for robust stabilization. Theorem 12 or
Theorem 13 can be used, in order to obtain the gain
K0 for robust stabilization and performance.

Corollary 14 (Robust admisibility). Let the sys-
tem (23) with the pair (A(ρ), B) controllable. There
is a DOF control of the form (35) that stabilizes
the closed-loop system, if there exists the matrix
P = PT � 0, and matrices X, Z such that the
following LMI is satisfied

PAi + AT
i P +BXCi + CT

i XTBT ≺ 0, (38)

where Ai, Ci, i = 1, . . . , l, representing the polytope
vertices, then the feedback gain are obtained from

K0 = Z−1X (39)

with PB = BZ.

Corollary 15 (Robust admisibility in H2). Let
the system (23) with the pair (A(ρ), B) controllable
and D1(ρ) = 0, which supports a polytopic
representation whose vertices are defined by
Ai, B1i , CΓi and C1i . There is a DOF control of
the form (24), which guarantees a suboptimal
performance in H2 for the closed loop system
(36), if there exists G, X, Pi = PT

i � 0, W such that
tr(W) < 1 and the following LMI is satisfied−G −GT Φ Υ

? −2Pi 0
? ? −µI

 < 0,

[
Pi (C1i)

T

C1i W

]
> 0, (40)

for i = 1, . . . , l, where B1i =

(
B1i

0

)
, C1i = (C1i 0),

Φ = GTAi +BXCi + Pi + GT and Υ = GTB1i . The
feedback gain is:

K0 = Z−1X (41)

with GTB = BZ.

Corollary 16 (Robust admisibility in H∞).
Let the system (23) with the pair (A(ρ), B)
controllable, which supports a polytopic
representation whose vertices are defined by
Ai, B1i , CΓi and C1i . There is a DOF control of
the form (24), which guarantees a suboptimal
performance in H∞ for the closed loop system
(36), if there exists G, X, Pi = PT

i � 0 such that
the following LMI is satisfied
−G −GT Φ 0 Υ

? −2τPi (C1i)
T 0

? ? −I D1i

? ? ? −γ2I

 < 0, (42)

for i = 1, . . . , l, where B1i =

(
B1i

0

)
, C1i = (C1i 0),

Φ = GTAi + BXCi + Pi + GT , Υ = GTB1i , and
τ >> 1. The feedback gain is:

K0 = Z−1X (43)
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with GTB = BZ.

For all cases, the matrices of the dynamic
controllerAk, Bk, Ck,Dk, are determined from K0.

5. Numerical example

5.1. Parametric DS
Consider the dynamic modes of one DS descri-

bed by:

[
1 0 0
0 θ 0

] ż1
ż2
ż3

 =

[
−(1 + θ) 1 0

1 0 −(1 + θ)

] z1
z2
z3

 +

[
0
−2

]
u +

[
1
1

]
ω

y =

[
1 0 1
1 1 0

] z1
z2
z3

 (44)

where θ ∈ [1 2] and θ̇ ∈ [−1 1]. For this case,

E(θ)ET (θ) =

[
1 0
0 θ2

]
, Γ =

1 0
0 1

θ

0 0

 ,
resulting the following LPV system:[

ẋ1

ẋ2

]
=

[
−(1 + θ) 1

θ

1 θ̇
θ

] [
x1

x2

]
+

[
0
−2

]
u +

[
1
1

]
ω

y =

[
1 0
1 1

θ

] [
x1

x2

]
(45)

It can easily be verified that, for all θ, θ̇, this system
is controllable, which means that the DS can be
admissible. In addition, for the stabilization, the
transformed system admits an SOF control, so that
Theorem 13 can be applied, only to determine
the gain K0, which is sufficient for the robust
stabilization of the closed-loop LPV system. From
the numerical solution of the LMI, with γ =

0,0227, is obtained:

GT =

[
0,2038 −0,2025
−0,1971 0,2221

]
,

X = [−10,2933 11,1305];

thus Z = 0,2221, and

K0 = [−46,3432 50,1127].

The Figure 1 shows the closed-loop poles as a
function of the parameter θ, θ̇, which, as can be
seen, are stable (see Figure 2). Consequently, the
robust admissibility of the DS is guaranteed.

Figure 1: Distribution of closed loop poles.

Figure 2: Distribution of projected poles of the closed loop.

To evaluate the outputs of the controlled system,
the system in closed loop has been simulated with
parametric variations using Matlabr-Simulinkr,
as is shown in the Figure 3.

Applying the robust control by SOF, which
is shown in the Figure 4 and due to robust
admissibility, it can be seen that the outputs
converge to their steady state, such as is shown
in the Figure 5, which is only affected by the
perturbation ω(t), the signal that is shown in the
Figure 6.
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Figure 3: Parameter behavior θ.

Figure 4: Control temporal behavior.

5.2. Parametric square SD

Consider the system 1 0 0
0 1 0

0,1 0,2 1 + 0,1θ1


ż1

ż2

ż3

 =

=

 0 1 0,2
−1 − θ2 −1 − θ1 0

0 0 θ3


z1

z2

z3

 +

011
 u

y =

1 0 1
1 1 0
1 1 1


z1

z2

z3


where θ1 ∈ [0 1], θ2 ∈ [0,25 1], θ3 ∈ [0 0,5]. This
system has zero index. Then, for all θi, it is regular
and impulse free, but is not admissible. Although

Figure 5: Temporal behavior of the controlled outputs.

Figure 6: Temporal behavior of the disturbance signal.

the matrix E is uncertain, there are two aspects that
allow to apply the design technique that has been
developed:

1. For all θ1, the matrix E is non-singular (zero
index).

2. The matrix of the measured outputs is of
complete order, so that the system supports a
classic SOF control.

Thus, the transformation linear is Γ = E−1, that
is

Γ(θ) =


1 0 0
0 1 0
−1

θ1+10
−2

θ1+10
10

θ1+10


Accordingly, the transformed system corres-

ponds to following LPV system:ẋ1
ẋ2
ẋ3

 =


−1

5(θ1+10) 1 − 2
5(θ1+10)

2
θ1+10

−θ2 − 1 −θ1 − 1 0
−θ3
θ1+10

−2θ3
θ1+10

10θ3
θ1+10


x1
x2
x3

 +

01
1

 u

y =


1 − 1

θ1+10 − 2
θ1+10

10
θ1+10

1 1 0
1 − 1

θ1+10 1 − 2
θ1+10

10
θ1+10


x1
x2
x3


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The admissibility problem can be solved by
stabilizing of transformed LPV system applying
the Theorem 11, with u = K0y. In effect, the
following matrices are obtained:

P =

47,2127 6,8250 13,3801
6,8250 12,6129 −2,7575

13,3801 −2,7575 10,8275

 ,
X =

[
−11,8221 0,3080 −6,3564

]
,

Z = 8,9627,

then

K0 = [−1,3190 0,0344 − 0,7092].

In order to verify the robust admissibility, Figure
7 shows the location of the poles in closed loop
based on the variations of the parameters θi, for
i = 1, 2, 3.

Figure 7: Distribution of the poles for the system in closed
loop.

6. Concluding remarks

From the results obtained in this research, the
contributions are focused on the analysis and
synthesis of controllers for a class of linear
descriptor systems dependent on parameters. First,
a model of linear descriptor systems with variable
parameters has been considered, which consider
uncertainties in the descriptor matrix. Then, an
analysis of admissibility and robust control for
a class of descriptor systems with polytopic

parametric uncertainties has been presented. The
class is defined by those processes where there is a
linear injective application that allows to transform
the parameter-dependent descriptor system to a
regular LPV system. Thus, the properties and
conditions of the original system are conserved
in the transformed system, which guarantees the
design of a control for the robust admissibility
(stability) and the robust performance. The design
of the control in the transformed system is a
guarantee of satisfying the robust admissibility and
performance for the original descriptor system.
The synthesis of the control law has been done
by means of the static feedback of the extended
output, which is based on obtaining a feedback
gain for the output and a feedback gain for its
derivative. A design technique based on dynamic
output feedback has been also proposed, where the
dynamic controller is obtained from a static output
feedback control problem. The gains are derived
by robust stabilizing and robust performance
of LPV systems, using the characterizations of
the H2-H∞ norms as LMIs, which arise from
parameter dependent Lyapunov functions. The
design technique also allows to impose multi-
objective specifications. The theoretical results
have been evaluated through simulations.
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realimentación estática de la salida extendida. Revista
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