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Abstract.- This research deals with the modeling of the monthly distribution of soil erosion and sediment yield in the
Tucutunemo basin for the year 2015. The remote sensing technics on Landsat satellite images and ASTER global digital
elevation model of a spatial resolution of 30 meters are adapted to use USLE (Universal Soil Loss Equation) and Langebein-
Schumm models to estimate the erosion. The monthly precipitation is estimated using the statistical spatial prediction models
based on the Ordinary Krigging using the records of 23 precipitation gauges. The J-Bessel model is the best adjustment to the
precipitation of 30 minutes. It has been found that the soil erosion and yield sediment occur in the high and middle part of the
basin. According the location, the precipitation of 30 minutes occurs in a magnitude from high moderately to high during the
rainy season. The applied method contributes to detect the specific areas of sediment accumulation into the basin
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Modelado de la distribución mensual de la erosión del suelo y la
producción de sedimentos en la cuenca de Tucutunemo, Venezuela

Resumen.- Esta investigación tiene como objetivo el modelado de la distribución mensual de la erosión del suelo y la
producción de sedimentos en la cuenca de Tucutunemo, para el año 2015. Con la finalidad de estimar la erosión, se adaptaron
las técnicas de detección remota en imágenes satelitales de Landsat y el modelo de elevación digital global ASTER con una
resolución espacial de 30 metros para utilizar los modelos USLE(Universal Soil Loss Equation) y Langebein-Schumm. La
precipitación mensual se estima utilizando los modelos estadísticos de predicción espacial, basados en Krigging Ordinario
usando los registros de 23 indicadores de precipitación. Para la precipitación de 30 minutos, el modelo J-Bessel es el que
presenta mejor ajuste. Se ha encontrado que la erosión del suelo y la producción de sedimentos ocurren en la parte alta y media
de la cuenca. Así mismo, las precipitaciones de 30 minutos se producen en una magnitud de moderadamente alta a alta, según
la ubicación, durante la temporada de lluvias. El método aplicado contribuye a detectar las áreas específicas de acumulación
de sedimentos en la cuenca
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1 Introduction

Until the end of the 1970s, the soil erosion and
sediment yield models were used to estimate the
lumped occurrence of these hydrological variables.
Because of the development of the computer
technology, the geographical information system
(GIS) capabilities, and the availability of remote
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sensing products such as the satellite images and
digital elevation models (DEM) to the present,
the transition from the lumped models to the
distributed models has been possible. The lumped
models are characterized by two aspects: 1) they
assume spatially homogeneous uniform hillslope,
and 2) they are empirically based. Among these
models have been found USLE [1], RUSLE [2] and
EPIC [3]. The distributed models of soil erosion
and sediment yield can be classified according to
the flow regimen: 1) steady-state and 2) dynamic
state. In the first case, the distributed models of
soil erosion and sediment yield have the following
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characteristics: 1) They are models that adequately
represent deposition processes or sedimentation
pathways, 2) they are process-basedmodels, 3) they
are characterized by the presence of a governing
differential equation such as the kinematic wave
model. Among these models have been found
ANSWER [4], Water Erosion Prediction Project
(WEPP) model [5] and the European Soil Erosion
Model (EUROSEM) [6]. In the second case, the
distributed models of soil erosion and sediment
yield have the following characteristics: 1) They
are models that adequately represent deposition
processes or sedimentation pathways, 2) they are
process-based models, 3) they are characterized by
the presence of a governing differential equation
such as the kinematic wave model and 4) they
provide information on peak sediment discharge or
the sediment load pattern within a storm. The main
model that represents this evolution is the dynamic
version of the WEPP known as DWEPP [7].

In recent years, the progress in the GIS tools and
the products derived of remote sensing have given
as a result the application of the USLE model in
the steady-state by estimating the soil erosion from
the models evolved from rainfall based erosion
prediction, through Soil Conservation Service
Curve-Number-based runoff estimations. These
USLE applications to estimate the soil erosion
precisely on the watershed and basin scale rather at
a field scale have been implemented by [8, 9]. The
DEMallows to use the terrain elevations to estimate
the terrain slope with a spatial resolution that can
be adjusted to the field practices, which influences
on the topographical factor. The satellite images
allow to apply classification techniques to estimate
the land use and land cover (LULC) in the study
area, which influences on the crop management
factor (C), the conservation practice factor (P) and
the curve number (CN). This study is carried out
on the Tucutunemo river basin, the aims are: 1)
to apply the empirical models to estimate the soil
erosion and the sediment yield, such as USLE
and Langbeing-Schumm model, 2) to determine
the areas associated to the source for soil particle
detaching and sediment yield.

2 Study area

The study area is the Tucutunemo river basin
located in the Aragua State at the central region
of Venezuela (Figure 1). The basin area is
limited by the following coordinates: 67°19’00”W,
67°29’00”W, 10°02’00”N, 10°08’30”. The length
of the main stream of the Tuctunemo river is of 27
km. The terrain slope varies as follows: 0-15% (41
km2, 37%), 15-33% (38 km2, 35%), 33-54% (25
km2, 22%), 54->153% (7km2, 6%). Most part of
terrain slope can be classified as of mean to high
varying in a range between 5 and 20% [10]. The
total area of basin is 110 km2.

3 Methods

3.1 Estimation of the soil erosion
The soil erosion is estimated using the Universal

Soil Loss Equation (USLE) model developed by
[1] following the process shown in the Figure
2. The equation (1) estimates A, the average
annual soil erosion per unit area (t/ha) from six
independent factors: a) R is rainfall erosivity factor
(MJ.mm/ ha.h); b) K is the soil erodibility factor
(Mg.h/MJ.mm) c) LS is the topographical factor
integrated by L, length factor and S, the slope
steepness factor; d) C is the crop management
factor and e) P is the conservation practice factor.

A = R · K · L · S · C · P. (1)

a) Rainfall erosivity factor (R): the R factor
(Figure 3) for n number of periods is calculated
using total kinetic energy of a storm (E) for
k number of such type of periods using the
following equations (2),(3) and (4):

E =
k∑

i=1
Ei, (2)

EI30 = E · I30, (3)

R =
n∑

l=1


m∑

j=1
(EI30) j

 . (4)
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Figure 1: Location of Tucutunemo river basin, Aragua state, Venezuela.

Where, I30 is the highest rainfall intensity in any
30 minutes duration (mm/h); EI30 is the rainfall
erosivity index for storm j; m is the number of
storms in n number of periods; R is rainfall
erosivity factor (MJ.mm/ha.h) for n number
of periods. The kinetic energy for the rainfall
periods having constant intensity is estimated
using the equation (5) [1]:


Ei = Pi

(
0, 119 + 0, 0873 log10 Ii

)
,

if Ii < 76∨
Ei = Pi (0.0.283) , if Ii > 76∨

(5)

Where, Ei is the kinetic energy per area unit
(MJ/ha); Pi is the depth of rainfall (mm) and Ii

is the intensity of rainfall (mm/h) for a rainfall
periods having constant intensity.

The rainfall data is acquired from the records
each 5 minutes obtained from station network
of 24 rainfall gauges operated in real time
by the National Institute of Meteorology
and Hydrology (Table 1). The rainfall is
accumulated from sequencing periods each 5
minutes to a total of 30 minutes. The selected
storm event corresponding to duration of 30
minutes is the maximum total precipitation
occurred into each month for 2015.

The models of statistical spatial prediction
(SSPM) are applied for predicting the precip-
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Figure 2: The process of estimating hydrologic variables in the Tucutunemo river basin, Aragua state,
Venezuela: 1) Soil erosion (A), 2) Sediment yield (SY), 3) Sediment delivery ratio (SDR).

itation; using the values of the target variable
(z) at some new location s0, being a set of
observations of a target variable z denoted
as z(s1 ),z(s2 ). . . ,z(sn), where si=(xi,yi) is a
location and xi and yi are the coordinates in
geographical space and n is the number of
observations. The precipitation values represent
the target variable. The geographical domain
of interest (area, land surface, object) can be
denoted as A, represented by the Tucutunemo
river basin. It defines inputs, outputs and
the computational procedure to derive outputs
based on the given inputs: Ẑ (s0)= E{Z/z(si),qk
(s0),γ(h),s ε A}.
Where z(si) is the input point dataset, qk (s0)

is the list of deterministic predictors and γ(h)
is the covariance model defining the spatial
autocorrelation structure. The type of SSPM
used is the statistical model called Ordinary
Krigging (OK),whose techniquewas developed
by [11]. The predictions are based on the model
refered by the equation (6):

Z(s) = µ + ε′(s). (6)

Where µ is the constant stationary function
(global mean) and ε’(s) is the spatially
correlated stochastic part of variation. The
predictions are made as in [12] introduced
to the analysis of point data is the derivation
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Figure 3: Monthly rainfall erosivity factor (R) corresponding to the Tucutunemo river basin, Aragua State,
Venezuela, during 2015

and plotting of the so-called semivariances —
differences between the neighbouring values
following the equation (7):

γ(h) = 1/2E
[
(z(si) − z(si+h))

2] . (7)

Where z (si) is the value of target variable
at some sampled location and z(si+h) is the
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Table 1: Rainfall stations in the Tucutunemo river
basin.

Identification
Universal Trasversal
Mercator (UTM) Zone

19 North
X Y

Maracay 647852 1133364
San juan de los morros 682730 1096657
Guigue 616848 1124032
Barquisimeto 465302 1112800
Acarigua 474393 1055668
Central 720643 1172466
Cumana 370486 1155409
Maturin 479892 1077777
Porlamar 394363 1206934
El vigia 208341 955328
Guanare 419398 996776
Guasdualito 301257 799936
Valera 349492 1018357
Barinas 366124 952685
Valencia-oficina 608178 1131078
Pto cabello base naval 608490 1159760
Campo carabobo 592724 1106863
San diego 616988 1138671
Vigirima 622892 1135723
Hda el manglar 613822 1154779
Agua blanca 626026 1110365
Vivero belen 643956 1105246
Planta de potabilizacion 619290 1112277

value of the neighbor at distance si+h. The
semivariances versus their distances produce
a standard experimental variogram. From the
experimental variogram, it can be fitted using
some of the authorized variogram models,
such as linear, spherical, exponential, circular,
Gaussian, Bessel, power and similar [13]. The
results generated from the application of SSPM
for the precipitation data of 30 minutes are
shown in Figure 4. The rest ofmaps are obtained
by using the raster calculator tool contained
in the menu of spatial analyst tools into the
ArcToolbox as a part of menu of available
options in the Geographic Information System
(GIS) software identified as ArcGIS V10.0.

b) Soil erodibility factor (K): the K factor (Figure
5) is the rate of soil erosion per unit of rainfall
erosivity index for a specified soil. The K factor
was calculated using the following regression
equation (8) presented by [14]:

K =2, 8 · 10−7 · M1,14 (12 − a)+

+ 4, 3 · 10−3 (b − 2) + 3, 3 · 10−3 (c − 3) .
(8)

Where, K: soil erodibility factor
(Mg.h/MJ.mm); M: particle size parameter
(percent silt + percent very fine sand); a:
percent organic matter content; b: soil structure
code; c: soil profile permeability class. The
parameters for the K factor estimating are
derived from the Venezuela soil national map
created by the Ministry of Environment and
available from the website of the Geographic
Institute of Venezuela, Simon Bolivar. The
extraction of soil type for the Tucutunemo
river basin is made using the tool of extraction
by mask in ArcGIS 10.0 (Figure 5). Two soil
types are found in the Tucutunemo river basin,
which are inceptisols (87,75 km2, 74%) and
mollisols (31,2 km2, 26%) (Figure 5a). Once
the soil type is defined, the a and b parameters
are mainly obtained from [15]. The average
of organic carbon amount in the different
depths of profiles in inceptisols order is found
varying between 1,1 and 1,44% for a soil
depth from 0 to 15 cm [16]. The particle size
distribution of inceptisols soil for a depth from
0 to 24 cm determined by Voncir et al.[17], is:
sand: 70,45%, silt: 15,06%, clay: 14,49%.The
average organic matter amount and average
texture for a mollisols soil type are determined
by [17, 18], as follows: organic matter: 26 g/kg
(2,71%), sand: 120 g/kg (12,5%), silt: 577 g/kg
(60,16%), clay: 236 g/kg (24,6%). The percent
sand + silt contents and percent organic matter
content are shown in Figures 5(b) and Figure
5(c), respectively. For inceptisols and mollisols
soils according to the particle size distribution,
the permeabilities are 10 m/d and 1 m/d, the
medium particle sizes are 0,5 and 0,1 mm,
respectively [19]. These parameters a and b
to determine the K factor in equation (8) are
selected from Table 2 and Table 3. The result
of erodibility factor is shown in the Figure 5f.

c) Topographical factor (LS): The topography
factors such as: slope length (L) and slope
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Figure 4: Monthly precipitation measured during 30 minutes corresponding to the Tucutunemo river
basin, Aragua State, Venezuela, during 2015

steepness (S) (Figure 6) are calculated using
the following equations:
L factor:
It is calculated based on the relationship
developed by [1] according the equation (9):

L =
(
λ

22, 3

)m

. (9)

Where, λ is field slope length (m); m is the
dimensionless exponent that depends on slope,
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Figure 5: Physical parameters that influence the soil erodibility factor in the Tucutunemo river basin,
Aragua state, Venezuela, during 2015.

Table 2: Structure code for different types of soil.

Code Structure Particle size (mm)
1 Very fine granular <1
2 Fine granular 1-2
3 Medium or coarse granular 2-10
4 Blocky, platy or massive >10

being 0,5 if slope > 5%, 0,4 if slope < 5% and
> 3%, 0,3 if slope ≤ 3% and > 1%, 0,2 if slope
≤ 1%. The field slope length (λ) is adjusted in

Table 3: Structure code for different types of soil.

Code Description Permeability rate (mm/h)
1 Rapid >130
2 Moderate to rapid 60-130
3 Moderate 20-60
4 Slow to Moderate 5-20
5 Slow 1-5
6 Very slow <1

the map of digital elevation model to grid size
of 100 m based on the recommendation made
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Figure 6: Physical parameters that influence the topographical factor in the Tucutunemo river basin,
Aragua state, Venezuela, during 2015: a) Terrain elevation (masl), b) Terrain slope (degree), c) Terrain
slope (%), d) topographical factor (LS).

by previous researchers [9]. This adjustment
of grid size is achieved by applying a raster
resampling technique contained in ArcGIS
10.0, and applied on a digital elevation model
(DEM). The gridded data is derived by ASTER
(Advance Spaceborne Thermal Emission and
Reflection Radiometer) Global DEM as one of
the product generated by the METI and NASA
agencies (Figure 6a). This DEM is downloaded
from the web site: https://earthexplorer.
usgs.gov/. The entity identification is AST-

GDEMV2_0N10W068, the acquisition date is
2011/10/17, the resolution is 1 arc-second, the
sensor type is GDEM, the ellipsoid is WGS84
and the unit is degree. The map of parameter
m is generated by applying the condition on the
slopemap in the raster calculator tool ofArcGIS
10.0. The percent slope map is obtained from
the surface tool in GIS software (Figure 6c),
which requires to introduce a digital elevation
model (DEM).
S factor:
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It is estimated using the equation (10) having
length of the slope higher than 4 m [20].{

S = 10, 8 · sin (θ) + 0, 03, f or slope < 9%,
S = 16, 8 · sin (θ) − 0, 05, f or slope > 9%.

(10)
Where, θ represents angle of the slope (de-
grees). The degree slope map is obtained from
the surface tool in GIS software using ASTER
GDEM (Figure 6b). The (LS) topographical
factor map is obtained by the product of slope
length (L) and slope steepness (S), and is shown
in the Figure (6d).

d) Crop management factor (C): the C factor
(Figure 7) depends on the land use and
land cover (LULC) shown in Figure 8. The
map of land use and land cover is obtained
by using the maximum likelihood algorithm
into the supervised classification tool into
ENVI v.4.7 software applied on the of surface
reflectance image of Landsat 8 OLI satellite.
The satellite images are acquired from the
Landsat Collection Level-2, which is based
on the surface reflectance (Figure 9). The
images have been downloaded from the web
site: https://earthexplorer.usgs.gov/.
The selected satellitewas Landsat 8Operational
Land Imager (L8 OLI). The scene is identified
under the world reference system according
to the following raw and path: 004, 053,
respectively. The criterion for selecting of
the Landsat images is the lowest coverage of
clouds, aerosols and haze. The clouds and their
associated shadows, aerosols and haze obstruct
the ground view; causing atypical values in the
reflectance observations through time. This can
lead to confusion of the land use and land cover
(LULC) change detection and the analysis of
the reflectance trends (Figure 8).
The dependence of the cloud free images
restricts the sampling opportunities to the dry
season in the tropics [21]. Images affected by
clouds, aerosols and haze often contain a large
number of free pixels that can be used. The
image represents the LULC condition during
the dry and rainy season. In Venezuela, the dry
period begins in November or December and

ends in April or May while the rainy season
begins in April or May and ends in November
or December [22]. The image characteristics
acquired according to the satellite are identified
as follows (Table 4): a) the scene identi-
fication code: LC80040532015008LGN01, b)
the acquisition date: 2015-01-08, c) the cloud
coverage:23,98, d) the image quality: 9, e) the
angle of sun azimuth: 140,83164216 and f)
the angle of sun elevation: 48,15079950. The
parameters of map projection according to the
United State Geological Survey (USGS) are:
a) Projection: Universal Transverse Mercator
(UTM), b) Datum: World Geodetic System
1984 (WGS84), c) UTM Zone: 19 N and e)
Resample Method: Cubic Convolution.

e) Conservation practice factor (P): the P factor
(Figure 10) depends on the land use and land
cover (LULC) shown in Figure 8.

3.2 Estimation of sediment yield

The sediment yield (SY) is estimated using the
Langbeing-Schumm model following the method
shown in the Figure 2. This method is also used in
watersheds that only have information on effective
precipitation. The production of sediments per unit
area is estimated according the equation (11) [10]:

SY =
10P2,33

e

1 + 0, 0007P3,33
e

. (11)

Where, qs (ton/mile2), Pe is the effective
annual precipitation in inches, can be calculated
according to the method of the United States
Soil Conservation Service (US-SCS). The US-SCS
method requires information on the classification
of soils, land use, treatment or practice and the
hydrological condition to determine the Curve
Number (CN). From the curve number, the
storage of water in the soil (S) and the effective
precipitation are estimated. The curve number
for the wet soil condition (CN III) is shown in
Figure 12. The effective precipitation and the
sediment yield in the Tucutunemo river are shown
in Figure 13 and Figure 14.
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Figure 7: Crop management factor (C) in the Tucutunemo river basin, Aragua state, Venezuela, during
2015.

3.3 Sediment delivery ratio (SDR)

The SDR is a fraction of the eroded soil
from the source area transporting to the sink
area with surface flow. The equation (12) is a
mathematical formulation for estimating SDR,
where SY represents the observed sediment yield

at the outlet of the watershed and A represents the
estimated average annual soil erosion using USLE
for the same watershed [23]:

SDR =
SY
A
. (12)
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Figure 8: Monthly Land use and land cover corresponding to the Tucutunemo river basin, Aragua State,
Venezuela, during 2015
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Figure 9: Landsat satellite monthly images corresponding to the Tucutunemo river basin, Aragua State,
Venezuela, during 2015.

3.4 Geostatistical modeling of annual soil ero-
sion and annual sediment yield

The type of statistical spatial prediction model
used is the statistical model called Ordinary
Krigging (OK), whose technique was developed

by [11].
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Table 4: Images of Landsat 8 OLI satellite.

(1) (2) (3) (4) (5) (6)
LC80040532015008LGN01 2015-01-08 23,98 7 140,83164216 48,15079950
LC80040532015040LGN01 2015-02-09 15,00 8,66 130,27865461 52,04329093
LC80040532015072LGN01 2015-03-13 34,78 9 113,66554010 59,30694516
LC80040532015120LGN01 2015-04-30 7,53 9 76,58961361 65,18667019
LC80040532015136LGN01 2015-05-16 45,04 7 66,57532548 64,42909368
LC80040532015168LGN01 2015-06-17 53,52 7 58,47092498 62,01125773
LC80040532015184LGN01 2015-07-03 25,12 9 59,91182760 61,50572841
LC80040532015216LGN01 2015-08-04 35,90 9 71,91635868 62,81459372
LC80040532015248LGN01 2015-09-05 24,10 9 95,64722616 64,90714235
LC80040532015280LGN01 2015-10-07 14,65 9 124,07891462 62,74979513
LC80040532015328LGN01 2015-11-24 7,88 9 144,78160997 52,42420107
LC80040532015344LGN01 2015-12-10 12,71 9 145,27981631 49,69824493

(1) the scene identification code, (2) the acquisition date, (3) the cloud coverage, (4) the image quality, (5) the
angle of solar azimuth and (6) the angle of solar zenith.

4 Results

4.1 Results of estimation of the soil erosion
The results of monthly soil erosion maps and its

factors during 2015 are shown in Figures 3 to 11.

a) Results of rainfall erosivity factor (R) (Figure
3), the main variable to estimate the rainfall
erosivity factor is the precipitation of 30
minutes. The results for the precipitation of
30 minutes from January to December 2015
are shown in Figure 4. The precipitation of 30
minutes in the dry months is similar varying
between 1,63 mm and 14,19 mm (Figures 4a,
4b, 4c, 4k and 4l). The precipitation of 30
minutes varies between 10,67 and 68 mm in
the rainymonths (Figures 4d-4h). The statistical
spatial prediction model (SSPM) of monthly
precipitation is the J-Bessel function. This
function is fitted to the observed precipitation
with a gradient that varies between 0,4 and
0,75 (Table 5). The equation is identified by
the following coefficients in a general structure:
a·Nugget+b·(J-Bessel(c, d)). The values of
coefficients vary as follows (Table 5): a:
between 0 and 119,36, b: between 14,152
and 492,47, c: between 31797 and 558150,
d: between 0,01 and 1,9944. The coefficient a
is associated with the no spatial correlation.
The coefficient b is associated with C0+ C1
term, which is the sill variation. The coefficient
c represents the maximum distance between
stations of neighbor precipitation observations.

The coefficient d represents the parameter of
the J-Bessel function. There is pattern in the
SPPMs for the dry season, associated with the
first months of the each year. In all cases, the
semivariances are smaller at shorter distance
and then they stabilize at some distance. The
results for the rainfall erosivity factor (R) from
January to December 2015 are shown in Figure
3. The rainfall erosivity factor in the dry months
varies between 0,93 and 19,79 MJ.mm/ha.h
(Figures 3a, 3b, 3c, 3k and 3l). The R factor
varies between 15,46 and 447,43 MJ·mm/ha·h
in the rainy months (Figures 3d-3h). During the
dry season, the precipitation of 30 minutes and
R factor are higher in themiddle and low regions
of Tucutunemo basin.
During the rainy season, the precipitation of 30
minutes and R factor are higher in the high and
middle regions of Tucutunemo basin.

b) Results of erodibility factor (K) the erodibility
factor is estimated by physical parameterswhich
are indicated in the Figure 5. The soil type
consists of two classes (Figure 5a): inceptisols
and mollisols. Inceptisols comprise the most
part of area of Tucutunemo river basin reaching
a 74% of total area, from the high to the middle
part of basin. Inceptisols and Mollisols are a
soil order in USDA soil taxonomy. According
to the [15], the central concept of Inceptisols
is that of soils of humid and subhumid regions
that have altered horizons that have lost bases or
iron and aluminum but retain some weatherable
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Figure 10: Conservation practice factor (P) in the Tucutunemo river basin, Aragua state, Venezuela, during
2015.

minerals. They do not have an illuvial horizon
enriched with either silicate clay or with an
amorphous mixture of aluminum and organic
carbon. Mollisols comprise 36% of total area
of Tucutunemo river basin, in the low part of

basin, near to theValencia Lake. This is the zone
where it is developed the agricultural activity.
According to the [15], the central concept of
Mollisols is that of soils that have a dark colored
surface horizon and are base rich. Nearly all
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Figure 11: Soil erosion (A) in the Tucutunemo river basin, Aragua state, Venezuela, during 2015.

have a mollic epipedon. Many also have an
argillic or natric horizon or a calcic horizon.
A few have an albic horizon. Some also have a
duripan or a petrocalic horizon. The Inceptisols
and Mollisols contain 85% and 65% of silt and
sand, 1,5 and 2%of organicmatter, 10 and 1m/d
of permeability, 0,5 and 0,1 of medium particle
size, respectively. These physical parameters
allow to estimate the erodibility factor for a
Inceptisol and Mollisol soil as 0,47 and 0,33
kg·h/MJ·mm.

c) Results of topographical factor (LS): The

topographical factor is represented by the
terrain elevation and the terrain slope. The
spatial distribution of the terrain elevations,
slopes, and topographical factor varies between
(Figure 6a, 6b, 6c): 1) 503 and 704 masl, 0
and 12%, -35 and 28,3 (38,65 km2, 32,5%), 2)
704 and 902 masl, 12 and 25%, -18,3 and 2,73
(38,65 km2, 32,5%), 3) 902 and 1124 masl, 26
and 42 %, 2,74 and 21,85 (32,93 km2, 27,7%),
4) 1124 and 1687 masl, 42 and 94 %, 21,86
and 45,42 ( 8,44 km2, 7,09%). The agricultural
activity is developed under the first condition.
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Figure 12: Curve Number (CN III) in the Tucutunemo river basin, Aragua state, Venezuela, during 2015.

d) Results of crop management factor (C) the
results of C factor require los results obtained
on the land cover and land use derived from
Landsat 8 OLI satellite images. These images
are shown in Figure 7, where the Tucutunemo
river basin is represented from January to
December for 2015. The images are shown in

false color using the combination of the spectral
bands: 5, 4 and 3. The red color is representing
the vegetation coverage, which is the most
part of the area. Toward the central region of
the basin in brightness tone is observed the
agricultural uses, which represents the main
activity in the Tucutunemo river basin. The
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Figure 13: Effective precipitation (mm) in the Tucutunemo river basin, Aragua state, Venezuela, during
2015.

classified images are shown in Figure 8, where
the land use an land cover (LULC) detected are
five, the percent spatial distributions of LULC
and C factor for April 2015 are the following
(Figure 8d): 1) vegetation (18,92 km2, 16%,

0,01), 2) agricultural (30,08 km2 , 25%, 0,13),
3) degraded soil (69,95 km2, 59%, 0,28), 4)
clouds (0 km2) and 5) shadows (0 km2). The
percent spatial distribution for August 2015 is
the following (Figure 8h): 1) vegetation (106,93
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Figure 14: Sediment yield (g/ha) in the Tucutunemo river basin, Aragua state, Venezuela, during 2015.

km2, 90,3%, 0,01), 2) agricultural (8,18 km2,
6,9%. 0,13), 3) degraded soil (3,3 km2, 2,78%,
0,28), 4) clouds (0 km2) and 5) shadows (0 km2).

e) Results of conservation practice factor (P) the

results of P factor require los results obtained
on the land cover and land use derived from
Landsat 8 OLI satellite images (Figure 7). The
classified images are shown in Figure 8, where
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Table 5: Results of modeling of monthly precipitation statistical spatial prediction represented by the
semivariances for the time series of images between 1986 and 1991 in the Tucutunemo river basin.

Date of Image SSPM Krigging Ordinario
2015-01-08 PC1 Semivariance SSPM 11,125·Nugget+28,328·J-Bessel(34977, 0,01)

Predicted and Measured Regression function 0,389619308061585·x+4,12571115118064
Standardized Error Regression Function −0, 101338895899458 · x + 0, 700652314446477
Samples 23

2015-02-09 PC1 Semivariance SSPM 3, 4597· Nugget+14,152·J-Bessel(31797, 0,70098)
Predicted and Measured Regression function 0,421161923907274·x+3,1111196201193
Standardized Error Regression Function -0,132791502641185·x+0,816515041257734
Samples 23

2015-03-13 PC1 Semivariance SSPM 10,456·Nugget+399,95·J-Bessel(499390, 10)
Predicted and Measured Regression function 0,666064660774914·x+3,79913225011893
Error Regression Function -0,333935339225086·x+3,79913225011894
Standardized Error Regression Function -0,0533789679669054·x+0,680077588925542
Samples 29

2015-04-30 PC1 Semivariance SSPM 124,86·Nugget+148,6·J-Bessel(93671, 0,01)
Predicted and Measured Regression function 0,513132251301728·x+11,6236130675131
Standardized Error Regression Function -0,0363163911311564·x+0,710722861397881
Samples 29

2015-05-16 PC1 Semivariance SSPM 97,385·Nugget+203,17·J-Bessel(558150, 1,0507)
PMRF 0,526846690461996·x+9,823435814398
SERF -0,0433741481861566·x+0,890535529155565
Samples 22

2015-06-17 PC1 Semivariance SSPM 119,36·Nugget+404,27·J-Bessel(220610, 1,4525)
PMRF 0,549642947939819·x+15,5812696221036
SERF -0,0335424473779188·x+0,959696463418054
Samples 26

2015-07-03 PC1 Semivariance SSPM 15,255·Nugget+492,47·J-Bessel(143030, 0,01)

Predicted and Measured Regression function 0,751339936706698·x+12,8349520739822
Error Regression Function -0,248660063293302·x+12,8349520739822
Standardized Error Regression Function -0,03020683581146·x+1,48876217913642
Samples 23

2015-08-04 PC1 Semivariance SSPM 104,77·Nugget+380,04·J-Bessel(153650, 0,01)

Predicted and Measured Regression function 0,424297370730271·x+15,3072962029994
Standardized Error Regression Function -0,0311051114369269·x+0,741337510627896
Samples 23

2015-09-05 PC1 Semivariance SSPM 89,603·Nugget+330·J-Bessel(69634, 0,01)
Predicted and Measured Regression function 0,418660547119316·x+10,5186814140897
Error Regression Function -0,581339452880684·x+10,5186814140897
Standardized Error Regression Function -0,034164870671135·x+0,535457680012268
Samples 21

2015-10-07 PC1 Semivariance SSPM 0·Nugget+472,76·J-Bessel(86277, 0,01)

Predicted and Measured Regression function 0,427485456646955·x+10,5491971049236
Standardized Error Regression Function -0,109721002176278·x+2,02012098973276
Samples 25

2015-11-24 PC1 Semivariance SSPM 131,07·Nugget+403,61·J-Bessel(275100, 0,79683)

Predicted and Measured Regression function 0,432075908929093·x+10,6186075263914
Error Regression Function -0,567924091070908·x+10,6186075263914
Standardized Error Regression Function -0,0486290470209368·x+0,821683206330385
Samples 28

2015-12-10 PC1 Semivariance SSPM 76,374·Nugget+254.73·J-Bessel(385490, 1,9944)
Predicted and Measured Regression function 0,218247072662198·x+7,82057339541776
Standardized Error Regression Function -0,0492161823027591·x+0,58523883407058
Samples 26

the land use an land cover (LULC) detected are
five, the percent spatial distributions of LULC
and P factor for April 2015 are the following

(Figure 8d): 1) vegetation (18,92 km2, 16%,
0,01), 2) agricultural (30,08 km2 , 25%, 0,13),
3) degraded soil (69,95 km2, 59%, 0,28), 4)
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clouds (0 km2) and 5) shadows (0 km2). The
percent spatial distribution for August 2015 is
the following (Figure 8h): 1) vegetation (106,93
km2, 90,3%, 0,8), 2) agricultural (8,18 km2,
6,9%. 0,03), 3) degraded soil (3,3 km2, 2,78%,
0,9), 4) clouds (0 km2) and 5) shadows (0 km2).

4.2 Results of estimation of the sediment yield
(SY)

The results of monthly sediment yield maps
during 2015 are obtained using equation (12). The
results for the two factors involved in equation
(12) are described for each one of these: a) Curve
number (CN); and b) effective precipitation (Pe).
The curve number used corresponds to the soil wet
condition. The curve number varies between 85
and 89. This range of CN is small because the
Tucutunemo river basin is of rural type. The curve
number of 85 is associated to a good cover forest
combined with a soil type with moderately high
runoff potential. This curve number has the greatest
occurrence because of the vegetation comprises the
most part of terrain coverage in the Tucutunemo
river basin, b) the effective precipitation (Pe) is
influenced by the dry and rainy seasons occurred
for 2015. The higher effective precipitation varies
in the range between 19 y 34 mm for October
2015, which is located between the north and
middle regions of the Tucutunemo river basin.
During the dry season, the effective precipitation
varies between 0 and 1,59 mm. During the rainy
season, the effective precipitation varies between
9,57 and 34 mm. In whole year 2015, the effective
precipitation is higher during the rainy season by
comparing to the dry season, occurring in the
agricultural plots and in the mountainous area,
c) the sediment yield (SY) is influenced by the
dry and rainy seasons occurred for 2015. The
higher sediment yield varies in the range between
41710 and 81192 g/ha for October 2015, which
is located between the north and middle regions of
the Tucutunemo river basin. During the dry season,
the sediment yield varies between 0 and 60,25 g/ha.
During the rainy season, the sediment yield varies
between 20055 and 81192 g/ha. In whole year
2015, the sediment yield is higher during the rainy
season by comparing to the dry season, occurring

in the agricultural plots and in the mountainous
area.

4.3 Results of sediment delivery ratio (SDR)
The results of sediment delivery ratio (SDR)

are shown in Figure 15. The sediment delivery
ratio varies according to the dry or rainy season.
In general, SDR varies between 0 and 1 in whole
of year. However, SDR takes punctual values > 1
indicating accumulation areas of sediment. During
the rainy season, it would be necessary to expand
the number of classes to a number greater than ten
to show the specific areas of sediment accumulation
(Figures 15d-f).

5 Discussion

The soil erosion depends on six physical factors.
The erosivity factor (R) is estimated from the
kinetic energy for a precipitation intensity of 30
minutes. The precipitations of 30 minutes during
the dry season are lower than 35 mm [10],
corresponding to a type of precipitation that cause
a dry condition of soil while the precipitation in
the rainy season varies mainly between 35 and
50 mm, leaving a moderately high humidity in
the soil. The precipitation events greater than 50
mm occur with lower frequency, three events were
record in the months of July, August and October
for 2015. These precipitation events transfer water
to the matrix of the soil surface to reach a saturated
condition in the porous spaces. In general, the
precipitation of 30 minutes detaches the greatest
soil amount in the rainy season. The erodibility
factor (K) is greater in the inceptisols with respect
to the mollisols. The structure of inceptisols having
high sand and silt contents allows that the impact
of the water drop detaches greater amount of soil
particles by comparing with the mollisols in the
middle and low part of Tucutunemo river basin.
The slope length (L) factor is defined using a field
slope length of 100 m, which is one dimension
associated to the average length of the furrows in
the agricultural plots [24]. The slope steepness
(S) influences the negative or positive sign as
an indicator of the direction of the water runoff
on the terrain. The direction change direction is
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Figure 15:Monthly sediment delivery ratio (SDR) in the Tucutunemo river basin, Aragua state, Venezuela,
during 2015.
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significant in themountains area of theTucutunemo
river basin. The crop management factor (C) and
conservation practice (P) are dependent of the land
use and land cover, the highest values are found
where the agricultural plots are located in the
Tucutunemo river basin, occurring to the middle
and lowpart of basin. The soil erosion and sediment
yield in the Tucutunemo river basin reach high
values toward the high and middle part of the basin
reducing the magnitude toward the low part. In
addition, the magnitudes of the soil erosion and
sediment yield are influenced by the dry and rainy
seasons. The applied method for estimating the
spatial distribution of soil erosion, sediment yield
and SDR can detect the specific areas of sediment
accumulation into the basin.

6 Conclusions

The Tucutunemo river basin is a rural area
where the main land use and land cover are
agricultural activities, vegetation and degraded
soil. The agricultural activities are developed in the
middle part of basin. By this study, it has been found
that the soil erosion and yield sediment occur in the
high and middle part of the basin. According the
location, the precipitation of 30 minutes occurs in a
magnitude from highmoderately to high during the
rainy season. The precipitation causes the greatest
amount of soil erosion and sediment yield in the
high and middle part of the basin where the soil is
the inceptisols type, while these phenomenon are
lower in the low part of basin where the mollisols
is the soil type, which it is cohesive soil because
of the clay contents. The spatial distribution of
soil erosion and sediment yield leads to detect
the localization of the specific areas of sediment
accumulation into the basin.
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